РАЗРАБОТКА ВАКЦИН ДЛЯ ПРОФИЛАКТИКИ КОРОНАВИРУСНОЙ ИНФЕКЦИИ: ОТ SARS И MERS ДО COVID-19


Авторы

  • Й.-Д. Ли Гарвардский университет
  • В.-Ю. Чи Университет Джона Хопкинса
  • Ц.-Х. Су Гарвардский университет
  • Л. Ферралл Университет Джона Хопкинса
  • Ч.-Ф. Хун Университет Джона Хопкинса
  • Ц.-Ч. Ву Университет Джона Хопкинса; Школа медицины Джонса Хопкинса
  • А. Чёрная Санкт-Петербургский государственный университет https://orcid.org/0000-0002-5908-5673
  • М. Д. Серова Санкт-Петербургский государственный университет https://orcid.org/0000-0001-8234-3936
  • И. И. Гревцева ООО «ГенБит» https://orcid.org/0000-0002-5235-5124

DOI:

https://doi.org/10.32415/jscientia_2020_6_6_41-80

Ключевые слова:

коронавирусы, SARS-CoV-2, вакцина, разработка вакцин

Аннотация

Коронавирус тяжелого острого респираторного синдрома (SARS-CoV-2) – это новый вид коронавируса, вызывающий коронавирусную инфекцию 2019 года (COVID-19), которая стала причиной самой серьезной пандемии в текущем столетии. Учитывая высокую летальность и быстрое распространение заболевания, для подавления пандемии необходимо создание эффективной вакцины. С этой целью при тесном сотрудничестве научного сообщества, фармацевтической промышленности и правительственных организаций беспрецедентными темпами осуществляется разработка и тестирование широкого спектра вакцин. В настоящем обзоре выделены наиболее существенные в контексте создания вакцин биологические характеристики коронавирусов, а также кратко изложены ключевые выводы исследований вакцин против коронавируса тяжелого острого респираторного синдрома (SARS-CoV) и коронавируса ближневосточного респираторного синдрома (MERS-CoV) с акцентом на плюсы и минусы каждой стратегии иммунизации. На основе данных о результатах изучения вакцин против этих инфекций обсуждается текущее состояние и потенциальные сложности разработки вакцин для профилактики от COVID-19.

Оригинал статьи: Li YD, Chi WY, Su JH, et al. Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci. 2020;27(1):104. DOI: 10.1186/s12929-020-00695-2.

Статья переведена на русский язык и опубликована согласно условиям лицензии Creative Commons Attribution 4.0.

Библиографические ссылки

Centers‑for‑Disease‑Control‑and‑Prevention. Human Coronavirus Types. 2020. https://www.cdc.gov/coronavirus/types.html.

van der Hoek L. Human coronaviruses: what do they cause?. Antivir Ther. 2007;12(4 Pt B):651-658.

World‑Health‑Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Geneva: World‑Health‑Organization; 2003.

World‑Health‑Organization. MERS situation update, January 2020. Geneva: World‑Health‑Organization; 2020a.

Saag MS, Gandhi RT, Hoy JF, et al. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults: 2020 Recommendations of the International Antiviral Society-USA Panel. JAMA. 2020;324(16):1651-1669. DOI: 10.1001/jama.2020.17025

Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199-1207. DOI: 10.1056/NEJMoa2001316

Gandhi M, Yokoe DS, Havlir DV. Asymptomatic Transmission, the Achilles' Heel of Current Strategies to Control Covid-19. N Engl J Med. 2020;382(22):2158-2160. DOI: 10.1056/NEJMe2009758

World‑Health‑Organization. Coronavirus-disease (COVID‑19) pandemic. Geneva: World‑Health‑Organization; 2020b.

Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006;66:193-292. DOI: 10.1016/S0065-3527(06)66005-3

Stadler K, Masignani V, Eickmann M, et al. SARS-beginning to understand a new virus. Nat Rev Microbiol. 2003;1(3):209-218. DOI: 10.1038/nrmicro775

Enjuanes L, Zuñiga S, Castaño-Rodriguez C, et al. Molecular Basis of Coronavirus Virulence and Vaccine Development. Adv Virus Res. 2016;96:245-286. DOI: 10.1016/bs.aivir.2016.08.003

NCBI‑Reference‑Sequence. SARS coronavirus Tor2, complete genome. 2020.

NCBI‑Reference‑Sequence. Middle East respiratory syndrome‑related coronavirus isolate HCoV‑EMC/2012, complete genome. 2020.

NCBI‑Reference‑Sequence. Severe acute respiratory syndrome coronavirus 2 isolate Wuhan‑Hu‑1, complete genome. 2020.

Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3):226-236. DOI: 10.1038/nrmicro2090

Wang N, Shang J, Jiang S, Du L. Subunit Vaccines Against Emerging Pathogenic Human Coronaviruses. Front Microbiol. 2020;11:298. DOI: 10.3389/fmicb.2020.00298

Snijder EJ, Decroly E, Ziebuhr J. The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. Adv Virus Res. 2016;96:59-126. DOI: 10.1016/bs.aivir.2016.08.008

Cao Z, Liu L, Du L, et al. Potent and persistent antibody responses against the receptor-binding domain of SARS-CoV spike protein in recovered patients. Virol J. 2010;7:299. DOI: 10.1186/1743-422X-7-299

Zhong X, Yang H, Guo ZF, et al. B-cell responses in patients who have recovered from severe acute respiratory syndrome target a dominant site in the S2 domain of the surface spike glycoprotein. J Virol. 2005;79(6):3401-3408. DOI: 10.1128/JVI.79.6.3401-3408.2005

Qiu M, Shi Y, Guo Z, et al. Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect. 2005;7(5-6):882-889. DOI: 10.1016/j.micinf.2005.02.006

Tang XC, Agnihothram SS, Jiao Y, et al. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc Natl Acad Sci U S A. 2014;111(19):E2018-E2026. DOI: 10.1073/pnas.1402074111

Li Y, Wan Y, Liu P, et al. A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Res. 2015;25(11):1237-1249. DOI: 10.1038/cr.2015.113

Li J, Ulitzky L, Silberstein E, et al. Immunogenicity and protection efficacy of monomeric and trimeric recombinant SARS coronavirus spike protein subunit vaccine candidates. Viral Immunol. 2013;26(2):126-132. DOI: 10.1089/vim.2012.0076

He Y, Li J, Heck S, et al. Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: implication for vaccine design. J Virol. 2006;80(12):5757-5767. DOI: 10.1128/JVI.00083-06

Tai W, Wang Y, Fett CA, et al. Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants. J Virol. 2016;91(1):e01651-16. DOI: 10.1128/JVI.01651-16

Tai W, Zhao G, Sun S, et al. A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection. Virology. 2016;499:375-382. DOI: 10.1016/j.virol.2016.10.005

Wang Y, Tai W, Yang J, et al. Receptor-binding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection. Hum Vaccin Immunother. 2017;13(7):1615-1624. DOI: 10.1080/21645515.2017.1296994

Zhao J, Zhao J, Mangalam AK, et al. Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. Immunity. 2016;44(6):1379-1391. DOI: 10.1016/j.immuni.2016.05.006

He Y, Zhou Y, Siddiqui P, Niu J, Jiang S. Identification of immunodominant epitopes on the membrane protein of the severe acute respiratory syndrome-associated coronavirus. J Clin Microbiol. 2005;43(8):3718-3726. DOI: 10.1128/JCM.43.8.3718-3726.2005

Buchholz UJ, Bukreyev A, Yang L, et al. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci USA. 2004;101(26):9804-9809. DOI: 10.1073/pnas.0403492101

Huisman W, Martina BE, Rimmelzwaan GF, et al. Vaccine-induced enhancement of viral infections. Vaccine. 2009;27(4):505-512. DOI: 10.1016/j.vaccine.2008.10.087

Kam YW, Kien F, Roberts A, et al. Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro. Vaccine. 2007;25(4):729-740. DOI: 10.1016/j.vaccine.2006.08.011

Jaume M, Yip MS, Cheung CY, et al. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway. J Virol. 2011;85(20):10582-10597. DOI: 10.1128/JVI.00671-11

Wang SF, Tseng SP, Yen CH, et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun. 2014;451(2):208-214. DOI: 10.1016/j.bbrc.2014.07.090

Rosenthal KS, Zimmerman DH. Vaccines: all things considered. Clin Vaccine Immunol. 2006;13(8):821-829. DOI: 10.1128/CVI.00152-06

Bolles M, Deming D, Long K, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol. 2011;85(23):12201-12215. DOI: 10.1128/JVI.06048-11

Tseng CT, Sbrana E, Iwata-Yoshikawa N, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One. 2012;7(4):e35421. DOI: 10.1371/journal.pone.0035421

Iwata-Yoshikawa N, Uda A, Suzuki T, et al. Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. J Virol. 2014;88(15):8597-8614. DOI: 10.1128/JVI.00983-14

Honda-Okubo Y, Barnard D, Ong CH, et al. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol. 2015;89(6):2995-3007. DOI: 10.1128/JVI.02980-14

He Y, Zhou Y, Liu S, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun. 2004;324(2):773-781. DOI: 10.1016/j.bbrc.2004.09.106

Du L, Zhao G, Li L, et al. Antigenicity and immunogenicity of SARS-CoV S protein receptor-binding domain stably expressed in CHO cells. Biochem Biophys Res Commun. 2009;384(4):486-490. DOI: 10.1016/j.bbrc.2009.05.003

Du L, Zhao G, He Y, et al. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine. 2007;25(15):2832-2838. DOI: 10.1016/j.vaccine.2006.10.031

Du L, Zhao G, Chan CC, et al. Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E. coli cells elicits potent neutralizing antibody and protective immunity. Virology. 2009;393(1):144-150. DOI: 10.1016/j.virol.2009.07.018

Du L, Zhao G, Chan CC, et al. A 219-mer CHO-expressing receptor-binding domain of SARS-CoV S protein induces potent immune responses and protective immunity. Viral Immunol. 2010;23(2):211-219. DOI: 10.1089/vim.2009.0090

Guo Y, Sun S, Wang K, et al. Elicitation of immunity in mice after immunization with the S2 subunit of the severe acute respiratory syndrome coronavirus. DNA Cell Biol. 2005;24(8):510-515. DOI: 10.1089/dna.2005.24.510

Liu SJ, Leng CH, Lien SP, et al. Immunological characterizations of the nucleocapsid protein based SARS vaccine candidates. Vaccine. 2006;24(16):3100-3108. DOI: 10.1016/j.vaccine.2006.01.058.

Wang L, Shi W, Joyce MG, et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun. 2015;6:7712. DOI: 10.1038/ncomms8712

Eyer P, Lierheimer E, Schneller M. Reactions of nitrosochloramphenicol in blood. Biochem Pharmacol. 1984;33(14):2299-2308. DOI: 10.1016/0006-2952(84)90670-1

Jiaming L, Yanfeng Y, Yao D, et al. The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine. 2017;35(1):10-18. DOI: 10.1016/j.vaccine.2016.11.064

Zhang N, Channappanavar R, Ma C, et al. Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus. Cell Mol Immunol. 2016;13(2):180-190. DOI: 10.1038/cmi.2015.03

Lan J, Deng Y, Chen H, et al. Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen. PLoS One. 2014;9(11):e112602. DOI: 10.1371/journal.pone.0112602

Qian C, Liu X, Xu Q, et al. Recent Progress on the Versatility of Virus-Like Particles. Vaccines. 2020; 8(1):139. DOI: 10.3390/vaccines8010139

Lokugamage KG, Yoshikawa-Iwata N, Ito N, et al. Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV. Vaccine. 2008;26(6):797-808. DOI: 10.1016/j.vaccine.2007.11.092

Liu YV, Massare MJ, Barnard DL, et al. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine. 2011;29(38):6606-6613. DOI: 10.1016/j.vaccine.2011.06.111

Wang C, Zheng X, Gai W, et al. MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques. Oncotarget. 2017;8(8):12686-12694. DOI: 10.18632/oncotarget.8475

Wang C, Zheng X, Gai W, et al. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice. Antiviral Res. 2017;140:55-61. DOI: 10.1016/j.antiviral.2016.12.019

Rauch S, Jasny E, Schmidt KE, Petsch B. New Vaccine Technologies to Combat Outbreak Situations. Front Immunol. 2018;9:1963. DOI: 10.3389/fimmu.2018.01963

Wang Z, Troilo PJ, Wang X, et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 2004;11(8):711-721. DOI: 10.1038/sj.gt.3302213

Schalk JA, Mooi FR, Berbers GA, et al. Preclinical and clinical safety studies on DNA vaccines. Hum Vaccin. 2006;2(2):45-53. DOI: 10.4161/hv.2.2.2620

Yang ZY, Kong WP, Huang Y, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004;428(6982):561-564. DOI: 10.1038/nature02463

Kim TW, Lee JH, Hung CF, et al. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J Virol. 2004;78(9):4638-4645. DOI: 10.1128/jvi.78.9.4638-4645.2004

Zhao P, Cao J, Zhao LJ, et al. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine. Virology. 2005;331(1):128-135. DOI: 10.1016/j.virol.2004.10.016

Okada M, Okuno Y, Hashimoto S, et al. Development of vaccines and passive immunotherapy against SARS corona virus using SCID-PBL/hu mouse models. Vaccine. 2007;25(16):3038-3040. DOI: 10.1016/j.vaccine.2007.01.032

Wang Z, Yuan Z, Matsumoto M, et al. Immune responses with DNA vaccines encoded different gene fragments of severe acute respiratory syndrome coronavirus in BALB/c mice. Biochem Biophys Res Commun. 2005;327(1):130-135. DOI: 10.1016/j.bbrc.2004.11.147

Martin JE, Louder MK, Holman LA, et al. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine. 2008;26(50):6338-6343. DOI: 10.1016/j.vaccine.2008.09.026

Zakhartchouk AN, Liu Q, Petric M, Babiuk LA. Augmentation of immune responses to SARS coronavirus by a combination of DNA and whole killed virus vaccines. Vaccine. 2005;23(35):4385-4391. DOI: 10.1016/j.vaccine.2005.04.011

Woo PC, Lau SK, Tsoi HW, et al. SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody against SARS coronavirus. Vaccine. 2005;23(42):4959-4968. DOI: 10.1016/j.vaccine.2005.05.023

Muthumani K, Falzarano D, Reuschel EL, et al. A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med. 2015;7(301):301ra132. DOI: 10.1126/scitranslmed.aac7462

Modjarrad K, Roberts CC, Mills KT, et al. Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect Dis. 2019;19(9):1013-1022. DOI: 10.1016/S1473-3099(19)30266-X

Smith TRF, Patel A, Ramos S, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun. 2020;11(1):2601. DOI: 10.1038/s41467-020-16505-0

Al-Amri SS, Abbas AT, Siddiq LA, et al. Immunogenicity of Candidate MERS-CoV DNA Vaccines Based on the Spike Protein. Sci Rep. 2017;7:44875. DOI: 10.1038/srep44875

Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important?. Hum Vaccin Immunother. 2014;10(10):2875-2884. DOI: 10.4161/hv.29594

Knuchel MC, Marty RR, Morin TN, et al. Relevance of a pre‑existing measles immunity prior immunization with a recombi‑ nant measles virus vector. Hum Vacc Immunother. 2013;9(3):599-606. DOI: 10.4161/hv.23241

Enjuanes L, Dediego ML, Alvarez E, et al. Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease. Virus Res. 2008;133(1):45-62. DOI: 10.1016/j.virusres.2007.01.021

Schindewolf C, Menachery VD. Middle East Respiratory Syndrome Vaccine Candidates: Cautious Optimism. Viruses. 2019;11(1):74. DOI: 10.3390/v11010074

Gao W, Tamin A, Soloff A, et al. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet. 2003;362(9399):1895-1896. DOI: 10.1016/S0140-6736(03)14962-8

Liu RY, Wu LZ, Huang BJ, et al. Adenoviral expression of a truncated S1 subunit of SARS-CoV spike protein results in specific humoral immune responses against SARS-CoV in rats. Virus Res. 2005;112(1-2):24-31. DOI: 10.1016/j.virusres.2005.02.009

See RH, Petric M, Lawrence DJ, et al. Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines. J Gen Virol. 2008;89(Pt 9):2136-2146. DOI: 10.1099/vir.0.2008/001891-0

Kobinger GP, Figueredo JM, Rowe T, et al. Adenovirus-based vaccine prevents pneumonia in ferrets challenged with the SARS coronavirus and stimulates robust immune responses in macaques. Vaccine. 2007;25(28):5220-5231. DOI: 10.1016/j.vaccine.2007.04.065

Volz A, Sutter G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv Virus Res. 2017;97:187-243. DOI: 10.1016/bs.aivir.2016.07.001

Bisht H, Roberts A, Vogel L, et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A. 2004;101(17):6641-6646. DOI: 10.1073/pnas.0401939101

Chen Z, Zhang L, Qin C, et al. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J Virol. 2005;79(5):2678-2688. DOI: 10.1128/JVI.79.5.2678-2688.2005

Czub M, Weingartl H, Czub S, et al. Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine. 2005;23(17-18):2273-2279. DOI: 10.1016/j.vaccine.2005.01.033

Weingartl H, Czub M, Czub S, et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol. 2004;78(22):12672-12676. DOI: 10.1128/JVI.78.22.12672-12676.2004

Deming D, Sheahan T, Heise M, et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med. 2006;3(12):e525. DOI: 10.1371/journal.pmed.0030525

Sheahan T, Whitmore A, Long K, et al. Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus. J Virol. 2011;85(1):217-230. DOI: 10.1128/JVI.01805-10

Bukreyev A, Lamirande EW, Buchholz UJ, et al. Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet. 2004;363(9427):2122-2127. DOI: 10.1016/S0140-6736(04)16501-X

Kapadia SU, Rose JK, Lamirande E, et al. Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology. 2005;340(2):174-182. DOI: 10.1016/j.virol.2005.06.016

Kim E, Okada K, Kenniston T, et al. Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice. Vaccine. 2014;32(45):5975-5982. DOI: 10.1016/j.vaccine.2014.08.058

Guo X, Deng Y, Chen H, et al. Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus. Immunology. 2015;145(4):476-484. DOI: 10.1111/imm.12462

Jung SY, Kang KW, Lee EY, et al. Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus. Vaccine. 2018;36(24):3468-3476. DOI: 10.1016/j.vaccine.2018.04.082

Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845-1854. DOI: 10.1016/S0140-6736(20)31208-3

Zhu FC, Guan XH, Li YH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020;396(10249):479-488. DOI: 10.1016/S0140-6736(20)31605-6

Alharbi NK, Padron-Regalado E, Thompson CP, et al. ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine. 2017;35(30):3780-3788. DOI: 10.1016/j.vaccine.2017.05.032

Munster VJ, Wells D, Lambe T, et al. Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model. NPJ Vaccines. 2017;2:28. DOI: 10.1038/s41541-017-0029-1

Alharbi NK, Qasim I, Almasoud A, et al. Humoral Immunogenicity and Efficacy of a Single Dose of ChAdOx1 MERS Vaccine Candidate in Dromedary Camels. Sci Rep. 2019;9(1):16292. DOI: 10.1038/s41598-019-52730-4

van Doremalen N, Haddock E, Feldmann F, et al. A single dose of ChAdOx1 MERS provides protective immunity in rhesus macaques. Sci Adv. 2020;6(24):eaba8399. DOI: 10.1126/sciadv.aba8399

Folegatti PM, Bittaye M, Flaxman A, et al. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect Dis. 2020;20(7):816-826. DOI: 10.1016/S1473-3099(20)30160-2

Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396(10249):467-478. DOI: 10.1016/S0140-6736(20)31604-4

Volz A, Kupke A, Song F, et al. Protective Efficacy of Recombinant Modified Vaccinia Virus Ankara Delivering Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein. J Virol. 2015;89(16):8651-8656. DOI: 10.1128/JVI.00614-15

Haagmans BL, van den Brand JM, Raj VS, et al. An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels. Science. 2016;351(6268):77-81. DOI: 10.1126/science.aad1283

Koch T, Dahlke C, Fathi A, et al. Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: an open-label, phase 1 trial. Lancet Infect Dis. 2020;20(7):827-838. DOI: 10.1016/S1473-3099(20)30248-6

Agnihothram S, Gopal R, Yount BL Jr, et al. Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses. J Infect Dis. 2014;209(7):995-1006. DOI: 10.1093/infdis/jit609

Malczyk AH, Kupke A, Prüfer S, et al. A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform. J Virol. 2015;89(22):11654-11667. DOI: 10.1128/JVI.01815-15

Wirblich C, Coleman CM, Kurup D, et al. One-Health: a Safe, Efficient, Dual-Use Vaccine for Humans and Animals against Middle East Respiratory Syndrome Coronavirus and Rabies Virus. J Virol. 2017;91(2):e02040-16. DOI: 10.1128/JVI.02040-16

Liu RQ, Ge JY, Wang JL, et al. Newcastle disease virus-based MERS-CoV candidate vaccine elicits high-level and lasting neutralizing antibodies in Bactrian camels. J Integr Agric. 2017;16(10):2264-2273. DOI: 10.1016/S2095-3119(17)61660-5

Liu R, Wang J, Shao Y, et al. A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization. Antiviral Res. 2018;150:30-38. DOI: 10.1016/j.antiviral.2017.12.007

Takasuka N, Fujii H, Takahashi Y, et al. A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice. Int Immunol. 2004;16(10):1423-1430. DOI: 10.1093/intimm/dxh143

Qu D, Zheng B, Yao X, et al. Intranasal immunization with inactivated SARS-CoV (SARS-associated coronavirus) induced local and serum antibodies in mice. Vaccine. 2005;23(7):924-931. DOI: 10.1016/j.vaccine.2004.07.031

Lin JT, Zhang JS, Su N, et al. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir Ther. 2007;12(7):1107-1113.

Agrawal AS, Tao X, Algaissi A, et al. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother. 2016;12(9):2351-2356. DOI: 10.1080/21645515.2016.1177688

Deng Y, Lan J, Bao L, et al. Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus. Emerg Microbes Infect. 2018;7(1):60. DOI: 10.1038/s41426-018-0056-7

Minor PD. Live attenuated vaccines: Historical successes and current challenges. Virology. 2015;479-480:379-392. DOI: 10.1016/j.virol.2015.03.032

Lamirande EW, DeDiego ML, Roberts A, et al. A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters. J Virol. 2008;82(15):7721-7724. DOI: 10.1128/JVI.00304-08

Menachery VD, Gralinski LE, Mitchell HD, et al. Combination Attenuation Offers Strategy for Live Attenuated Coronavirus Vaccines. J Virol. 2018;92(17):e00710-18. DOI: 10.1128/JVI.00710-18

Menachery VD, Gralinski LE, Mitchell HD, et al. Middle East Respiratory Syndrome Coronavirus Nonstructural Protein 16 Is Necessary for Interferon Resistance and Viral Pathogenesis. mSphere. 2017;2(6):e00346-17. DOI: 10.1128/mSphere.00346-17

Graham RL, Becker MM, Eckerle LD, et al. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med. 2012;18(12):1820-1826. DOI: 10.1038/nm.2972

Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69. DOI: 10.1186/s12985-019-1182-0

DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, et al. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res. 2014;194:124-137. DOI: 10.1016/j.virusres.2014.07.024

Menachery VD, Debbink K, Baric RS. Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments. Virus Res. 2014;194:191-199. DOI: 10.1016/j.virusres.2014.09.009

Robson F, Khan KS, Le TK, et al. Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Mol Cell. 2020;79(5):710-727. DOI: 10.1016/j.molcel.2020.07.027

van Riel D, de Wit E. Next-generation vaccine platforms for COVID-19. Nat Mater. 2020;19(8):810-812. DOI: 10.1038/s41563-020-0746-0

Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 Vaccines at Pandemic Speed. N Engl J Med. 2020;382(21):1969-1973. DOI: 10.1056/NEJMp2005630

Johnson-&-Johnson. Johnson & Johnson announces a lead vaccine candidate for COVID-19; landmark new partnership with U.S. Department of Health & Human Services; and commitment to supply one billion vaccines worldwide for emergency pandemic use. 2020.

GSK. GSK announces intention to produce 1 billion doses of pandemic vaccine adjuvant in 2021 to support multiple COVID-19 vaccine collaborations. 2020.

Chemical-&-Engineering-News. Moderna picks Lonza to make 1 billion doses of its coronavirus vaccine. 2020.

CNN-Health. US taxpayers are funding six Covid vaccines. Here's how they work. 2020.

REUTERS. EU to use $2.7 billion fund to buy promising COVID-19 vaccines. 2020.

AP-News. China aims to make 1 billion COVID-19 vaccine doses a year. 2020.

World-Health-Organization. Draft landscape of COVID-19 candidate vaccines. Geneva: World-Health-Organization; 2020c.

Novavax. NVX-CoV2373 COVID-19 Vaccine candidate phase 1/2, part 1, clinical trial results. 2020.

Keech C, Albert G, Cho I, et al. Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N Engl J Med. 2020;383(24):2320-2332. DOI: 10.1056/NEJMoa2026920

Dai L, Zheng T, Xu K, et al. A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS. Cell. 2020;182(3):722-733.e11. DOI: 10.1016/j.cell.2020.06.035

Diehl MC, Lee JC, Daniels SE, et al. Tolerability of intramuscular and intradermal delivery by CELLECTRA(®) adaptive constant current electroporation device in healthy volunteers. Hum Vaccin Immunother. 2013;9(10):2246-2252. DOI: 10.4161/hv.24702

Kared H, Redd AD, Bloch EM, et al. CD8+ T cell responses in convalescent COVID-19 individuals target epitopes from the entire SARS-CoV-2 proteome and show kinetics of early differentiation. Preprint. bioRxiv. 2020;2020.10.08.330688. DOI: 10.1101/2020.10.08.330688

INOVIO-Pharmaceuticals. INOVIO announces positive interim phase 1 data for INO-4800 vaccine for COVID-19. 2020. URL: http://ir.inovio.com/news-releases/news-releases-details/2020/INOVIO-Announces-Positive-Interim-Phase-1-Data-For-INO-4800-Vaccine-for-COVID-19/default.aspx

Kauffman KJ, Webber MJ, Anderson DG. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J Control Release. 2016;240:227-234. DOI: 10.1016/j.jconrel.2015.12.032

Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics-developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759-780. DOI: 10.1038/nrd4278

Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines − a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261-279. DOI: 10.1038/nrd.2017.243

Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med. 2020. DOI: 10.1056/NEJMoa2022483

Anderson EJ, Rouphael NG, Widge AT, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med. 2020. DOI: 10.1056/NEJMoa2028436

Moderna’s COVID-19 Vaccine Candidate Meets its Primary Efficacy Endpoint in the First Interim Analysis of the Phase 3 COVE Study. Moderna, 2020. URL: https://investors.modernatx.com/news-releases/news-release-details/modernas-covid-19-vaccine-candidate-meets-its-primary-efficacy.

Genetic-Engineering-&-Biotechnology-News. BioNTech, Pfizer, and Fosun Pharma—BNT162. Genetic Engineering & Biotechnology News. 2020.

Mulligan MJ, Lyke KE, Kitchin N, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589-593. DOI: 10.1038/s41586-020-2639-4

Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020;586(7830):594-599. DOI: 10.1038/s41586-020-2814-7

Walsh EE, Frenck RW Jr, Falsey AR, et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med. 2020;383(25):2439-2450. DOI: 10.1056/NEJMoa2027906

Pfizer and BioNTech Conclude Phase 3 Study of COVID-19 Vaccine Candidate, Meeting All Primary Efficacy Endpoints. Pfizer, 2020. URL: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine.

The-New-York-Times. AstraZeneca Pauses Vaccine Trial for Safety Review. 2020.

Astrazeneca. COVID-19 vaccine AZD1222 clinical trials resumed in the UK. 2020.

AZD1222 vaccine met primary efficacy endpoint in preventing COVID-19. Astrazeneca, 2020. URL: https://www.astrazeneca.com/media-centre/press-releases/2020/azd1222hlr.html.

Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396(10255):887-897. DOI: 10.1016/S0140-6736(20)31866-3

Second Interim Analysis of Clinical Trial Data Showed a 91.4% Efficacy for the Sputnik V Vaccine on Day 28 After the First Dose; Vaccine Efficacy is Over 95% 42 Days After the First Dose. Sputnik V, 2020. URL: https://sputnikvaccine.com/newsroom/pressreleases/second-interim-analysis-of-clinical-trial-data-showed-a-91-4-efficacy-for-the-sputnik-v-vaccine-on-d/.

Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;369(6499):77-81. DOI: 10.1126/science.abc1932

Xia S, Duan K, Zhang Y, et al. Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials. JAMA. 2020;324(10):951-960. DOI: 10.1001/jama.2020.15543

Wang H, Zhang Y, Huang B, et al. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell. 2020;182(3):713-721.e9. DOI: 10.1016/j.cell.2020.06.008

Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2020. DOI: 10.1016/S1473-3099(20)30831-8

AIVITA-Biomedical. SARS-COV-2 VACCINE. 2020.

Zhou LK, Zhou Z, Jiang XM, et al. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov. 2020;6:54. DOI: 10.1038/s41421-020-00197-3

Stensballe LG, Nante E, Jensen IP, et al. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls community based case-control study. Vaccine. 2005;23(10):1251-1257. DOI: 10.1016/j.vaccine.2004.09.006

Spencer JC, Ganguly R, Waldman RH. Nonspecific protection of mice against influenza virus infection by local or systemic immunization with Bacille Calmette-Guérin. J Infect Dis. 1977;136(2):171-175. DOI: 10.1093/infdis/136.2.171

Starr SE, Visintine AM, Tomeh MO, Nahmias AJ. Effects of immunostimulants on resistance of newborn mice to herpes simplex type 2 infection. Proc Soc Exp Biol Med. 1976;152(1):57-60. DOI: 10.3181/00379727-152-39327

O'Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer protection against COVID-19?. Nat Rev Immunol. 2020;20(6):335-337. DOI: 10.1038/s41577-020-0337-y

Pilarowski G, Lebel P, Sunshine S, et al. Performance characteristics of a rapid SARS-CoV-2 antigen detection assay at a public plaza testing site in San Francisco. Preprint. medRxiv. 2020;2020.11.02.20223891. DOI: 10.1101/2020.11.02.20223891

Cao WC, Liu W, Zhang PH, et al. Disappearance of antibodies to SARS-associated coronavirus after recovery. N Engl J Med. 2007;357(11):1162-1163. DOI: 10.1056/NEJMc070348

Wu LP, Wang NC, Chang YH, et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis. 2007;13(10):1562-1564. DOI: 10.3201/eid1310.070576

Iwasaki A. What reinfections mean for COVID-19. Lancet Infect Dis. 2020. DOI: 10.1016/S1473-3099(20)30783-0

Craviso GL, Musacchio JM. High-affinity binding of the antitussive dextromethorphan to guinea-pig brain. Eur J Pharmacol. 1980;65(4):451-453. DOI: 10.1016/0014-2999(80)90354-4

Callaway E. The coronavirus is mutating − does it matter?. Nature. 2020;585(7824):174-177. DOI: 10.1038/d41586-020-02544-6

Korber B, Fischer WM, Gnanakaran S, et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182(4):812-827.e19. DOI: 10.1016/j.cell.2020.06.043

Zhang L, Richards A, Khalil A, et al. SARS-CoV-2 RNA reverse-transcribed and integrated into the human genome. Preprint. bioRxiv. 2020;2020.12.12.422516. DOI: 10.1101/2020.12.12.422516

Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of covid-19—final report. N Engl J Med. 2020. DOI: 10.1056/NEJMoa2007764

Group RC, Horby P, Lim WS, et al. Dexamethasone in hospitalized patients with covid-19—preliminary report. N Engl J Med. 2020. DOI: 10.1056/NEJMoa2021436.

Загрузки


Просмотров аннотации: 140

Дополнительные файлы

Опубликован

30.12.2020

Как цитировать

1.
Ли Й.-Д., Чи В.-Ю., Су Ц.-Х., Ферралл Л., Хун Ч.-Ф., Ву Ц.-Ч., Чёрная А., Серова М.Д., Гревцева И.И. РАЗРАБОТКА ВАКЦИН ДЛЯ ПРОФИЛАКТИКИ КОРОНАВИРУСНОЙ ИНФЕКЦИИ: ОТ SARS И MERS ДО COVID-19 // Juvenis Scientia. 2020. т. 6, № 6. сс. 41-80.

Выпуск

Раздел

ПЕРЕВОДНЫЕ СТАТЬИ

Категории