Обзор биологической активности флавоноидов: кверцетина и кемпферола
Авторы
- А. С. Чиряпкин Пятигорский медико-фармацевтический институт — филиал ВолгГМУ https://orcid.org/0000-0001-8207-2953
- Д. С. Золотых Пятигорский медико-фармацевтический институт — филиал ВолгГМУ https://orcid.org/0000-0001-6186-1611
- Д. И. Поздняков Пятигорский медико-фармацевтический институт — филиал ВолгГМУ https://orcid.org/0000-0002-5595-8182
Ключевые слова:
флавоноиды, кверцетин, кемпферол, гликозидные формы, биологическая активность, антиоксидантная активность, противоаллергическая активность, противовоспалительная активность, кардиопротекторная активность, противоопухолевая активность, механизмы действия, лекарственные препараты, химическая модификацияАннотация
Флавоноиды представляют собой обширный класс вторичных метаболитов растений, которые содержатся в разной концентрации во многих их частях. С давних времён лекарственное сырье, содержащее флавоноиды, используется в традиционной медицине различных стран, а также применяется в современной медицине для создания лекарственных препаратов. В сравнении с другими группами вторичных метаболитов флавоноиды часто присутствуют в достаточно больших количествах. Интерес к флавоноидам обусловлен постоянно обновляемыми данными об их биологической активности, а также широким распространением в растительном мире. В настоящем обзоре освещаются два наиболее часто встречающихся полифенольных соединения в растениях — кверцетин и кемпферол. В статье описаны основные гликозидные формы рассматриваемых флавоноидов и современные результаты изучения их биологической активности, а именно антиоксидантной, противоаллергической, противовоспалительной, кардиопротекторной и противоопухолевой. Кроме того, обсуждаются некоторые механизмы реализации выше приведённых видов биологического действия. Из осуществлённого анализа следует, что перспективно дальнейшее более углубленное фармакологическое исследование этих флавоноидов и разработка на их основе новых передовых лекарственных препаратов. Ядра кверцетина и кемпферола можно рекомендовать для химической модификации с целью получения высокоактивных соединений с антиоксидантной, противоаллергической, противовоспалительной, кардиопротекторной и противоопухолевой активностью.
Биографии авторов
А. С. Чиряпкин, Пятигорский медико-фармацевтический институт — филиал ВолгГМУ
преподаватель кафедры фармацевтической химии Пятигорского медико-фармацевтического института — филиал ВолгГМУ
Д. С. Золотых, Пятигорский медико-фармацевтический институт — филиал ВолгГМУ
кандидат фармацевтических наук, доцент кафедры токсикологической и аналитической химии Пятигорского медико-фармацевтического института — филиал ВолгГМУ
Д. И. Поздняков, Пятигорский медико-фармацевтический институт — филиал ВолгГМУ
кандидат фармацевтических наук, заведующий кафедры фармакологии с курсом клинической фармакологии Пятигорского медико-фармацевтического института — филиал ВолгГМУ
Библиографические ссылки
Теплова В. В., Исакова Е. П., Кляйн О. И. и др. Природные полифенолы: биологическая активность, фармакологический потенциал, пути метаболической инженерии (обзор) // Прикладная биохимия и микробиология. 2018. Т. 54. № 3. С. 215-235. [Teplova VV, Isakova EP, Klein OL, et al. Natural polyphenols: biological activity, pharmacological potential, the ways of metabolic engineering (review). Applied Biochemistry and Microbiology. 2018;54(3):215-235 (in Russ.)]. DOI: 10.7868/S0555109918030017. EDN: XOTZOP
Куркин В. А., Куркина А. В., Авдеева Е. В. Флавоноиды как биологически активные соединения лекарственных растений // Фундаментальные исследования. 2013. № 11-9. С. 1897-1901. [Kurkin VA, Kurkina AV, Avdeeva EV. The flavonoids as biologically active compounds of medicinal plants. Fundamental research. 2013;11-9:1897-1901 (in Russ.)]. EDN: RWHBST
Li Y, Yao J, Han C, et al. Quercetin, Inflammation and Immunity. Nutrients. 2016;8(3):167. DOI: 10.3390/nu8030167
Dias MC, Pinto DCGA, Silva AMS. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules. 2021;26(17):5377. DOI: 10.3390/molecules26175377
Ross JA, Kasum CM. Dietary flavonoids: Bioavailability, Metabolic Effects, and Safety. Annual Review of Nutrition. 2002;22(1):19-34. DOI: 10.1146/annurev. nutr. 22.111401.144957
Bouktaib M, Atmani A, Rolando C. Regio- and stereoselective synthesis of the major metabolite of quercetin, quercetin-3‑O-β-d-glucuronide. Tetrahedron Letters. 2002;43(35):6263-6266. DOI: 10.1016/s0040-4039(02)01264-9
Меньщиков Е. Б., Ланкин В. З., Зенков Н. К., и др. Окислительный стресс. Прооксиданты и антиоксиданты. Москва: Слово, 2006. 556 с. [Menschikov EB, Lankin VZ, Zenkov NK, et al. Okislitelnii stress. Prooksidanti i antioksidanti (Oxidative stress. Pro-oxidants and antioxidants). Moscow: Slovo, 2006. 556 p. EDN: QZDBBX
Xu D, Hu M-J, Wang Y-Q, et al. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules. 2019;24(6):1123. DOI: 10.3390/molecules24061123.
Zhang M, Swartz SG, Yin L, et al. Antioxidant Properties of Quercetin. Advances in Experimental Medicine and Biology. 2011;701:283-298. DOI: 10.1007/978‑1‑4419‑7756‑4_3
Robaszkiewicz A, Balcerczyk A, Bartosz G. Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biology International. 2007;31:1245-1250. DOI: 10.1016/j.cellbi.2007.04.009
Lakhanpal P, Rai DK. Quercetin: a versatile flavonoid. Internet Journal of Medical Update. 2007;2(2):22-37
Bahorun T, Soobrattee MA, Luximon-Ramma V, et al. Free radicals and antioxidants in cardiovascular health and disease. Internet Journal of Medical Update. 2006;1(2):25-41
Braun KF, Ehnert S, Freude T, et al. Quercetin Protects Primary Human Osteoblasts Exposed to Cigarette Smoke through Activation of the Antioxidative Enzymes HO-1 and SOD-1. The Scientific World Journal. 2011;11:2348-2357. DOI: 10.1100/2011/471426
Murakami A, Ashida H, Terao J. Multi targeted cancer prevention by quercetin. Cancer Letters. 2008;269(2):315-325. DOI: 10.1016/j.canlet.2008.03.046
Tezerji S, Abdolazimi H, Fallah A, et al. The effect of resveratrol and quercetin intervention on azoxymethane-induced colon cancer in Rats model. Clinical Nutrition Open Science. 2022;45:91-102. DOI: 10.1016/j.nutos.2022.01.008
Li Q-C, Liang Y, Hu G-R, et al. Enhanced therapeutic efficacy and amelioration of cisplatin-induced nephrotoxicity by quercetin in 1,2‑dimethyl hydrazine-induced colon cancer in rats. Indian Journal of Pharmacology. 2016;48(2):168-171. DOI: 10.4103/0253-7613.178834
Kim GT, Lee SH, Kim JI, et al. Quercetin regulates the sestrin 2‑AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53‑independent manner. International Journal of Molecular Medicine. 2014;33:863-869. DOI: 10.3892/ijmm.2014.1658
Liao H, Bao X, Zhu J, et al. O-Alkylated derivatives of quercetin induce apoptosis of MCF-7 cells via a caspase-independent mitochondrial pathway. Chemico-Biological Interactions. 2015;242:91-98. DOI: 10.1016/j.cbi.2015.09.022
Li S-Z, Qiao S-F, Zhang J-H, et al. Quercetin Increase the Chemosensitivity of Breast Cancer Cells to Doxorubicin Via PTEN/Akt Pathway. Anti-Cancer Agents in Medicinal Chemistry. 2015;15(9). DOI: 10.2174/1871520615999150121121708
Tao S-F, He H-F, Chen Q. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Mol Cell Biochem. 2015;402:93-100. DOI: 10.1007/s11010‑014‑2317‑7
Kim MC, Lee HJ, Lim B, et al. Quercetin induces apoptosis by inhibiting MAPKs and TRPM7 channels in AGS cells. International Journal of Molecular Medicine. 2014;33: 1657-1663. DOI: 10.3892/ijmm.2014.1704
Nwaeburu CC, Bauer N, Zhao Z, et al. Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget. 2016;7:58367-58380. DOI: 10.18632/oncotarget. 11122
Appari M, Babu KR, Kaczorowski A, et al. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. International Journal of Oncology. 2014;45:1391-1400. DOI: 10.3892/ijo.2014.2539
Mandal AK, Ghosh D, Sarkar S, et al. Nanocapsulated quercetin downregulates rat hepatic MMP-13 and controls diethylnitrosamine-induced carcinoma. Nanomedicine. 2014;9(15):2323-2337. DOI: 10.2217/nnm.14.11
Zhao P, Mao J-M, Zhang S-Y, et al. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis. Oncology Letters. 2014;8(2):765-769. DOI: 10.3892/ol.2014.2159
Oršolić N, Car N. Quercetin and hyperthermia modulate cisplatin-induced DNA damage in tumor and normal tissues in vivo. Tumor Biology. 2014;35(7):6445-6454. DOI: 10.1007/s13277‑014‑1843‑y
Kuhar M, Sen S, Singh N. Role of mitochondria in quercetin-enhanced chemotherapeutic response in human non-small cell lung carcinoma H-520 cells. Anticancer Res. 2006;26(2A):1297-1303
Zhao X, Zhang J. Mechanisms for quercetin in prevention of lung cancer cell growth and metastasis. Journal of Central South University (Medical Science) 2015;40(6):592-597. DOI: 10.11817/j.issn.1672-7347.2015.06.004
Mason V, Calgarotto AK, Franchi GC, et al. Multi target Effects of Quercetin in Leukemia. Cancer Prevention Research. 2014;7(12):1240-1250. DOI: 10.1158/1940-6207.capr-13-0383
Santos BL, Oliveira MN, Coelho PL, et al. Flavonoids suppress human glioblastoma cell growth by inhibiting cell metabolism, migration, and by regulating extracellular matrix proteins and metalloproteinases expression. Chemico-Biological Interactions. 2015;242:123-138. DOI: 10.1016/j.cbi.2015.07.014
Rauf A, Imran M, Khan IA, et al. Anticancer potential of quercetin: A comprehensive review. Phytotherapy Research. 2018;32(11):2109-2130. DOI: 10.1002/ptr.6155
Mlcek J, Jurikova T, Skrovankova S, et al. Quercetin and Its Anti-Allergic Immune Response. Molecules. 2016;21(5):623. DOI: 10.3390/molecules21050623
Juríková T, Mlček J, Sochor J, et al. Polyphenols and their Mechanism of Action in Allergic Immune Response. Glob J Allergy. 2015;1(2):37-39. DOI: 10.17352/2455-8141.000008.
Gröber U. Micronutrients: Metabolic Tuning — Prevention — Therapy. Drug Metabolism and Drug Interactions. 2009;24(2-4):331. DOI: 10.1515/dmdi.2009.24.2-4.331
Finn DF, Walsh JJ. Twenty-first century mast cell stabilizers. British Journal of Pharmacology. 2013;170(1):23-37. DOI: 10.1111/bph.12138
Nair MP, Kandaswami C, Mahajan S, et al. The flavonoid, quercetin, differentially regulates Th-1 (IFNγ) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Biochimica et Biophysica Acta (BBA). Molecular Cell Research. 2002;1593(1):29-36. DOI: 10.1016/s0167-4889(02) 00328-2
Weng Z, Zhang B, Asadi S, et al. Quercetin Is More Effective than Cromolyn in Blocking Human Mast Cell Cytokine Release and Inhibits Contact Dermatitis and Photosensitivity in Humans. PLoS ONE. 2012;7(3):e33805. DOI: 10.1371/journal.pone.0033805
Kimata M, Shichijo M, Miura T, et al. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clinical Experimental Allergy. 2000;30(4):501-508. DOI: 10.1046/j.1365-2222.2000.00768. x
Chirumbolo S. The Role of Quercetin, Flavonols and Flavones in Modulating Inflammatory Cell Function. Inflammation & Allergy. Drug Targets. 2010;9(4):263-285. DOI: 10.2174/187152810793358741
Oliveira TT, Campos KM, Cerqueira-Lima AT, et al. Potential therapeutic effect of Allium cepa L. and quercetin in a murine model of Blomia tropicalis induced asthma. DARU Journal of Pharmaceutical Sciences. 2015;23(1). DOI: 10.1186/s40199‑015‑0098‑5
Edwards RL, Lyon T, Litwin SE, et al. Quercetin Reduces Blood Pressure in Hypertensive Subjects. The Journal of Nutrition. 2007;137(11):2405-2411. DOI: 10.1093/jn/137.11.2405
Liu H, Guo X, Hu Y, et al. Heart protective effects and mechanism of quercetin preconditioning on anti-myocardial ischemia reperfusion (IR) injuries in rats. Gene. 2014;545(1):149-155. DOI: 10.1016/j.gene.2014.04.043
Bhat IUH, Bhat R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. Biology. 2021;10(7):586. DOI: 10.3390/biology10070586
Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chemistry. 2013;138(4):2099-2107. DOI: 10.1016/j.foodchem.2012.11.139
Imran M, Rauf A, Shah ZA, et al. Chemopreventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytotherapy Research. 2018;1-13. DOI: 10.1002/ptr.6227
Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem. 2011;11(4):298-344. DOI: 10.2174/138955711795305335
Devi KP, Malar DS, Nabavi SF, et al. Kaempferol and inflammation: From chemistry to medicine. Pharmacological Research. 2015:99:1-10. DOI: 10.1016/j.phrs.2015.05.002
Galati G. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology. 2002.177(1):91-104. DOI: 10.1016/s0300-483x(02)00198-1
Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nature Chemical Biology. 2008;4 (5):278-286. DOI: 10.1038/nchembio.85
Vellosa JCR, Regasini LO, Khalil NM, et al. Antioxidant and cytotoxic studies for kaempferol, quercetin and isoquercitrin. Eclética Química. 2011;36 (2):7-20. DOI: 10.1590/s0100-46702011000200001
Hyun SK, Jung HA, Chung HY, et al. In vitro peroxynitrite scavenging activity of 6‑hydroxykynurenic acid and other flavonoids from Ginkgo biloba yellow leaves. Archives of Pharmacal Research. 2006;29(12):1074-1079. DOI: 10.1007/bf02969294
Saw CLL, Guo Y, Yang AY, et al. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: Involvement of the Nrf2‑ARE signaling pathway. Food and Chemical Toxicology. 2014;72:303-311. DOI: 10.1016/j.fct.2014.07.038
Park JS, Rho HS, Kim DH, et al. Enzymatic Preparation of Kaempferol from Green Tea Seed and Its Antioxidant Activity. Journal of Agricultural and Food Chemistry. 2006;54(8):2951-2956. DOI: 10.1021/jf052900a
Tzeng C-W, Yan F-L, Wu T-H, et al. Enhancement of Dissolution and Antioxidant Activity of Kaempferol Using a Nanoparticle Engineering Process. Journal of Agricultural and Food Chemistry. 2011;59(9):5073-5080. DOI: 10.1021/jf200354y
Lee J-H, Kim G-H. Evaluation of Antioxidant and Inhibitory Activities for Different Subclasses Flavonoids on Enzymes for Rheumatoid Arthritis. Journal of Food Science. 2010;75(7):H212-H217. DOI: 10.1111/j.1750-3841.2010.01755. x
Garcia-Mediavilla V, Crespo I, Collado PS, et al. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. European Journal of Pharmacology. 2007;557(2-3):221-229. DOI: 10.1016/j.ejphar.2006.11.014
Deng S, Palu AK, West BJ, et al. Lipoxygenase Inhibitory Constituents of the Fruits of Noni (Morinda citrifolia) Collected in Tahiti. Journal of Natural Products. 2007;70(5):859-862. DOI: 10.1021/np0605539
Huang C-H, Jan R-L, Kuo C-H, et al. Natural Flavone Kaempferol Suppresses Chemokines Expression in Human Monocyte THP-1 Cells through MAPK Pathways. Journal of Food Science. 2010;75(8):H254‑H259. DOI: 10.1111/j.1750-3841.2010.01812.x
Yoon H-Y, Lee E-G, Lee H, et al. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs. International Journal of Molecular Medicine. 2013;32(4):971-977. DOI: 10.3892/ijmm.2013.1468
Kempuraj D, Madhappan B, Christodoulou S, et al. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. British Journal of Pharmacology. 2005;145(7):934-944. DOI: 10.1038/sj.bjp.0706246
Gong J-H, Shin D, Han S-Y, et al. Blockade of Airway Inflammation by Kaempferol via Disturbing Tyk-STAT Signaling in Airway Epithelial Cells and in Asthmatic Mice. Evidence-Based Complementary and Alternative Medicine. 2013;2013:1-13. DOI: 10.1155/2013/250725
Gong J-H, Shin D, Han S-Y, et al. Kaempferol Suppresses Eosinophil Infiltration and Airway Inflammation in Airway Epithelial Cells and in Mice with Allergic Asthma. The Journal of Nutrition. 2011;142(1):47-56. DOI: 10.3945/jn.111.150748
Kim JM, Lee EK, Kim DH, et al. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase. AGE. 2010;32(2):197-208. DOI: 10.1007/s11357‑009‑9124‑1
Yu L, Chen C, Wang L-F, et al. Neuroprotective Effect of Kaempferol Glycosides against Brain Injury and Neuroinflammation by Inhibiting the Activation of NF-κB and STAT3 in Transient Focal Stroke. PLoS ONE. 2013;8(2):e55839. DOI: 10.1371/journal.pone.0055839
Lee S-Y, Kim Y-J, Kwon S-H, et al. Inhibitory Effects of Flavonoids on TNF-α-Induced IL-8 Gene Expression in HEK 293 Cells. Korean Society for Biochemistry and Molecular Biology — BMB Reports. 2009;42(5):265-270. DOI: 10.5483/bmbrep.2009.42.5.265
Imran M, Salehi B, Sharifi-Rad J, et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules. 2019;24(12):2277. DOI: 10.3390/molecules24122277
Leung HW-C, Lin C-J, Hour M-J, et al. Kaempferol induces apoptosis in human lung non-small carcinoma cells accompanied by an induction of antioxidant enzymes. Food and Chemical Toxicology. 2007;45(10):2005-2013. DOI: 10.1016/j.fct.2007.04.023
Sonoki H, Animals A, Endo S, et al. Kaempferol and Luteolin Decrease Claudin-2 Expression Mediated by Inhibition of STAT3 in Lung Adenocarcinoma A549 Cells. Nutrients. 2017;9(6):597. DOI: 10.3390/nu9060597
Nguyen TTT, Tran E, Ong CK, et al. Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK. Journal of Cellular Physiology. 2003;197(1):110-121. DOI: 10.1002/jcp.10340
Azevedo C, Correia-Branco A, Araujo JR, et al. The Chemopreventive Effect of the Dietary Compound Kaempferol on the MCF-7 Human Breast Cancer Cell Line Is Dependent on Inhibition of Glucose Cellular Uptake. Nutrition and Cancer. 2015;67(3):504-513. DOI: 10.1080/01635581.2015.1002625
Zhu L, Xue L. Kaempferol Suppresses Proliferation and Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Breast Cancer Cells. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics. 2019;27(6):629-634. DOI: 10.3727/096504018x15228018559434
Li S, Yang T, Deng R, et al. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1. Onco Targets and Therapy. 2017;10:4809-4819. DOI: 10.2147/ott.s140886
Diantini A, Subarnas A, Lestari K, et al. Kaempferol-3‑O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncology Letters. 2012;3(5):1069-1072. DOI: 10.3892/ol.2012.596
Kim S-H, Hwang K-A, Choi K-C. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. The Journal of Nutritional Biochemistry. 2016;28:70-82. DOI: 10.1016/j. jnutbio.2015.09.027
Choi EJ, Ahn WS. Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutrition Research and Practice. 2008;2(4):322. DOI: 10.4162/nrp.2008.2.4.322
Jeong JC, Kim MS, Kim TH, et al. Kaempferol Induces Cell Death Through ERK and Akt-Dependent Down-Regulation of XIAP and Survivin in Human Glioma Cells. Neurochemical Research. 2008;34(5):991-1001. DOI: 10.1007/s11064‑008‑9868‑5
Siegelin MD, Reuss DE, Habel A, et al. The flavonoid kaempferol sensitizes human glioma cells to TRAIL-mediated apoptosis by proteasomal degradation of survivin. Molecular Cancer Therapeutics. 2008;7(11):3566-3574. DOI: 10.1158/1535-7163.mct-08-0236
Sharma V, Joseph C, Ghosh S, et al. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Molecular Cancer Therapeutics. 2007;6(9):2544-2553. DOI: 10.1158/1535-7163.mct-06-0788
Colombo M, Figueiró F, de Fraga Draws A, et al. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. International Journal of Pharmaceutics. 2008;543(1-2);214-223. DOI: 10.1016/j.ijpharm.2018.03.055
Mylonis I, Lakka A, Tsakalof A, et al. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions. Biochemical and Biophysical Research Communications. 2010;398(1):74-78. DOI: 10.1016/j.bbrc.2010.06.038
Huang W-W, Tsai S-C, Peng S-F, et al. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. International Journal of Oncology. 2013;42(6):2069-2077. DOI: 10.3892/ijo.2013.1909
Yoshida T, Konishi M, Horinaka M, et al. Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis. Biochemical and Biophysical Research Communications. 2008;375(1):129-133. DOI: 10.1016/j.bbrc. 2008.07.131
Li W, Du B, Wang T, et al. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-Telangiectasia Mutated-p53 pathway with the involvement of p53 Upregulated Modulator of Apoptosis. Chemico-Biological Interactions. 2009;177(2):121-127. DOI: 10.1016/j.cbi.2008.10.048
Bandyopadhyay S, Romero JR, Chattopadhyay N. Kaempferol and quercetin stimulate granulocyte-macrophage colony-stimulating factor secretion in human prostate cancer cells. Molecular and Cellular Endocrinology. 2008;287(1-2):57-64. DOI: 10.1016/j.mce.2008.01.015
Lee J, Kim JH. Kaempferol Inhibits Pancreatic Cancer Cell Growth and Migration through the Blockade of EGFR-Related Pathway In Vitro. PLOS ONE. 2016;11(5):e0155264. DOI: 10.1371/journal.pone.0155264
Wu L-Y, Lu H-F, Chou Y-C, et al. Kaempferol Induces DNA Damage and Inhibits DNA Repair Associated Protein Expressions in Human Promyelocytic Leukemia HL-60 Cells. The American Journal of Chinese Medicine. 2015;43(02):365-382. DOI: 10.1142/s0192415x1550024x
Huang W-W, Chiu Y-J, Fan M-J, et al. Kaempferol induced apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathway in human osteosarcoma U-2 OS cells. Molecular Nutrition & Food Research. 2010;54(11):1585-1595. DOI: 10.1002/mnfr.201000005
Dabeek WM, Marra MV. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients. 2019;11(10):2288. DOI: 10.3390/nu11102288
Tang X, Liu J, Dong W, et al. Protective Effect of Kaempferol on LPS plus ATP-Induced Inflammatory Response in Cardiac Fibroblasts. Inflammation. 2014;38(1):94-101. DOI: 10.1007/s10753‑014‑0011‑2
Zhou M, Ren H, Han J, et al. Protective Effects of Kaempferol against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart via Antioxidant Activity and Inhibition of Glycogen Synthase Kinase-3β. Oxidative Medicine and Cellular Longevity. 2015;2015:1-8. DOI: 10.1155/2015/481405
Xiao H-B, Jun-Fang, Lu X-Y, et al. Protective effects of kaempferol against endothelial damage by an improvement in nitric oxide production and a decrease in asymmetric dimethylarginine level. European Journal of Pharmacology. 2009;616(1-3):213-222. DOI: 10.1016/j.ejphar.2009.06.022
Choi J-H, Park S-E, Kim S-J, et al. Kaempferol inhibits thrombosis and platelet activation. Biochimie. 2015;115:177-186. DOI: 10.1016/j.biochi.2015.06.001
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2023 Чиряпкин А.С., Золотых Д.С., Поздняков Д.И.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.