АНОСМИЯ ПРИ COVID-19: ОСНОВНЫЕ МЕХАНИЗМЫ И ОЦЕНКА РОЛИ ОБОНЯТЕЛЬНОГО ПУТИ В РАЗВИТИИ ИНФЕКЦИОННОГО ПОРАЖЕНИЯ ГОЛОВНОГО МОЗГА
Авторы
- Р. Бутовт Медицинский коллегиум им. Людвика Ридигера, Университет Николая Коперника
- К. С. фон Бартельд Медицинская школа Рино, Университет Невады
Ключевые слова:
аносмия, COVID-19, обонятельный эпителий, SARS-CoV-2, ангиотензинпревращающий фермент 2, заболеваемость, диагностика, гипосмия, потеря обоняния, вкус, инфекционное поражение головного мозгаАннотация
В последние месяцы появилась информация о том, что новый коронавирус, ставший причиной пандемии COVID-19, вызывает снижение обонятельной и вкусовой чувствительности у значительной части пациентов. При этом хемосенсорная недостаточность зачастую является самым ранним, а иногда и единственным проявлением инфекции у не имеющих других симптомов носителей вируса SARS-CoV-2. Все больший интерес в последнее время, таким образом, вызывают возможные причины ранней и специфичной хемосенсорной дисфункции при COVID-2019. В данном обзоре мы провели анализ результатов недавних исследований, показавших, что распространенность таких симптомов как нарушения обоняния и вкуса у пациентов с COVID-19 не одинакова в различных популяциях. Вероятно, это обусловлено различиями в S-белке нескольких разновидностей вируса, либо межпопуляционными отличиями человеческих белков, которые используются вирусом для проникновения в клетки, что изменяет инфекционные свойства вируса. При подготовке этого обзора мы опирались на актуальные сведения о клеточных и молекулярных механизмах, лежащих в основе индуцированной вирусом аносмии, особо акцентируя внимание на новых данных о ключевой роли поддерживающих клеток обонятельного эпителия. Мы также провели критический анализ последних данных, свидетельствующих о поражении головного мозга при COVID-19, и оценили теоретическую возможность и пути проникновения SARS-CoV-2 в мозг через обонятельный эпителий полости носа. Помимо этого, мы проанализировали перспективы использования симптомов хемосенсорной дисфункции для скрининговой экспресс-диагностики COVID-19 на ранних стадиях развития заболевания.
Оригинал статьи: Butowt R, von Bartheld CS. Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. Neuroscientist. 2020;1-22. DOI: 10.1177/1073858420956905
Статья переведена на русский язык и опубликована согласно условиям лицензии Creative Commons Attribution 4.0.
Библиографические ссылки
Agyeman AA, Chin KL, Landersdorfer CB, et al. Smell and Taste Dysfunction in Patients With COVID-19: A Systematic Review and Meta-analysis. Mayo Clin Proc. 2020;95(8):1621-1631. DOI: 10.1016/j.mayocp.2020.05.030
Aragão MFVV, Leal MC, Cartaxo Filho OQ, et al. Anosmia in COVID-19 Associated with Injury to the Olfactory Bulbs Evident on MRI. AJNR Am J Neuroradiol. 2020;41(9):1703-1706. DOI: 10.3174/ajnr.A6675
Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging. 2020;12(11):10087-10098
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995-998. DOI: 10.1021/acschemneuro.0c00122
Bao L, Deng W, Huang B, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020;583(7818):830-833. DOI: 10.1038/s41586-020-2312-y
Baxter BD, Larson ED, Feinstein P, et al. Transcriptional profiling reveals TRPM5-expressing cells involved in viral infection in the olfactory epithelium. bioRxiv. 2020;2020.05.14.096016. DOI: 10.1101/2020.05.14.096016
Benetti E, Tita R, Spiga O, et al. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. MedRxiv. 2020. DOI: 10.1101/2020.04.03.20047977
Bénézit F, Le Turnier P, Declerck C, et al. Utility of hyposmia and hypogeusia for the diagnosis of COVID-19. Lancet Infect Dis. 2020;20(9):1014-1015. DOI: 10.1016/S1473-3099(20)30297-8
Bertlich M, Stihi C, Weiss BG, et al. Characteristics of impaired chemosensory function in hospitalized COVID-19 Patients. Preprint SSRN. 2020. DOI: 10.2139/ssrn.3576889
Bilinska K, Jakubowska P, von Bartheld CS, Butowt R. Expression of the SARS-CoV-2 entry proteins ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci. 2020;11(11):1555-1562. DOI: 10.1021/acschemneuro.0c00210
Brann DH, Tsukahara T, Weinreb C, et al. Non-neural expression of SARS-CoV-2 entry genes in the olfactory epithelium suggests mechanisms underlying anosmia in COVID-19 patients. Sci Adv. 2020;6(31):eabc5801. DOI: 10.1126/sciadv.abc5801
Brann JH, Firestein SJ. A lifetime of neurogenesis in the olfactory system. Front Neurosci. 2014;8:182. DOI: 10.3389/fnins.2014.00182
Briguglio M, Bona A, Porta M, et al. Disentangling the Hypothesis of Host Dysosmia and SARS-CoV-2: The Bait Symptom That Hides Neglected Neurophysiological Routes. Front Physiol. 2020;11:671. DOI: 10.3389/fphys.2020.00671
Bryche B, Deliot ASA, Murri S, et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Preprint bioRxiv. 2020. DOI: 10.1101/2020.06.16.151704
Butowt R, Bilinska K. SARS-CoV-2: olfaction, brain infection and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci. 2020;11(9):1200-1203. DOI: 10.1021/acschemneuro.0c00172
Cao Y, Li L, Feng Z, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020;6:11. DOI: 10.1038/s41421-020-0147-1
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan China: a descriptive study. Lancet. 2020;395(10223):507-513. DOI: 10.1016/S0140-6736(20)30211-7
Chen M, Shen W, Rowan NR, et al. Elevated ACE2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Preprint bioRxiv. 2020. DOI: 10.1101/2020.05.08.084996
Cooper KW, Brann DH, Farruggia MC, et al. COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron. 2020;107(2):219-233. DOI: 10.1016/j.neuron.2020.06.032
Dell'Era V, Farri F, Garzaro G, et al. Smell and taste disorders during COVID-19 outbreak: Cross-sectional study on 355 patients. Head Neck. 2020;42(7):1591-1596. DOI: 10.1002/hed.26288
Desforges M, Le Coupanec A, Dubeau P, et al. Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses. 2019;12(1):14. DOI: 10.3390/v12010014
Dos Santos NPC, Khayat AS, Rodrigues JCG, et al. TMPRSS2 variants and their susceptibility to COVID-19: focus in East Asian and European populations. MedRxiv Preprint. 2020. DOI: 10.1101/2020.06.09.20126680
DosSantos MF, Devalle S, Aran V, et al. Neuromechanisms of SARS-CoV-2: A Review. Front Neuroanat. 2020;14:37. DOI: 10.3389/fnana.2020.00037
Doty RL, Mishra A. Olfaction and its alteration by nasal obstruction, rhinitis, and rhinosinusitis [published correction appears in Laryngoscope 2001 Sep;111(9):1673]. Laryngoscope. 2001;111(3):409-423. DOI: 10.1097/00005537-200103000-00008
Dubé M, Le Coupanec A, Wong AHM, et al. Axonal Transport Enables Neuron-to-Neuron Propagation of Human Coronavirus OC43. J Virol. 2018;92(17):e00404-18. DOI: 10.1128/JVI.00404-18
Durante MA, Kurtenbach S, Sargi ZB, et al. Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat Neurosci. 2020;23(3):323-326. DOI: 10.1038/s41593-020-0587-9
Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020;383(16):1522-1534. DOI: 10.1056/NEJMoa2020283
Eliezer M, Hautefort C, Hamel AL, et al. Sudden and Complete Olfactory Loss of Function as a Possible Symptom of COVID-19. JAMA Otolaryngol Head Neck Surg. 2020;146(7):674-675. DOI: 10.1001/jamaoto.2020.0832
Fodoulian L, Tuberosa J, Rossier D, et al. SARS-CoV-2 receptor and entry genes are expressed by sustentacular cells in the human olfactory neuroepithelium. BioRxiv preprint. 2020. DOI: 10.1101/2020.03.31.013268
Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci U S A. 2020;117(17):9241-9243. DOI: 10.1073/pnas.2004999117
Friedrich G, Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991;5(9):1513-1523. DOI: 10.1101/gad.5.9.1513
Gane SB, Kelly C, Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. 2020;58(3):299-301. DOI: 10.4193/Rhin20.114.
Gilani S, Roditi R, Naraghi M. COVID-19 and anosmia in Tehran, Iran. Med Hypotheses. 2020;141:109757. DOI: 10.1016/j.mehy.2020.109757
Grant MC, Geoghegan L, Arbyn M, et al. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies from 9 countries. PLoS One. 2020;15(6):e0234765. DOI: 10.1371/journal.pone.0234765
Grubaugh ND, Hanage WP, Rasmussen AL. Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear. Cell. 2020. DOI: 10.1016/j.cell.2020.06.040
Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415-424. DOI: 10.1084/jem.20050828
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720. DOI: 10.1056/NEJMoa2002032
Gupta K, Mohanty SK, Kalra S, et al. The molecular basis of loss of smell in 2019-nCoV infected individuals. Research Square Preprint. 2020. DOI: 10.21203/rs.3.rs-19884/v1
Hannum ME, Ramirez VA, Lipson SJ, et al. Objective sensory testing methods reveal a higher prevalence of olfactory loss in COVID-19-positive patients compared to subjective methods: a systematic review and meta-analysis. MedRxiv preprint. 2020. DOI: 10.1101/2020.07.04.20145870.
Heydel JM, Coelho A, Thiebaud N, et al. Odorant-binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events. Anat Rec (Hoboken). 2013;296(9):1333-1345. DOI: 10.1002/ar.22735
Hopkins C, Surda P, Kumar N. Presentation of new onset anosmia during the COVID-19 pandemic. Rhinology. 2020;58(3):295-298. DOI: 10.4193/Rhin20.116
Hou YJ, Okuda K, Edwards CE, et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell. 2020;182(2):429-446.e14. DOI: 10.1016/j.cell.2020.05.042
Hummel T, Whitcroft KL, Andrews P, et al. Position paper on olfactory dysfunction. Rhinol Suppl. 2017;54(26):1-30. DOI: 10.4193/Rhino16.248
Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: report of A case. Acta Neurol Taiwan. 2006;15(1):26-28.
Irvin JD, Viau JM. Safety profiles of the angiotensin converting enzyme inhibitors captopril and enalapril. Am J Med. 1986;81(4C):46-50. DOI: 10.1016/0002-9343(86)90945-9
Jeffers SA, Tusell SM, Gillim-Ross L, et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004;101(44):15748-15753. DOI: 10.1073/pnas.0403812101
Jennes L. The nervus terminalis in the mouse: light and electron microscopic immunocytochemical studies. Ann N Y Acad Sci. 1987;519:165-173. DOI: 10.1111/j.1749-6632.1987.tb36295.x
Jia C, Roman C, Hegg CC. Nickel sulfate induces location-dependent atrophy of mouse olfactory epithelium: protective and proliferative role of purinergic receptor activation. Toxicol Sci. 2010;115(2):547-556. DOI: 10.1093/toxsci/kfq071
Jia Y, Shen G, Zhang Y, et al. Analysis of the mutation dynamics of SARS-CoV-2 reveals the spread history and emergence of RBD mutant with lower ACE2 binding affinity. BioRxiv preprint. 2020. DOI: 10.1101/2020.04.09.034942
Jiang RD, Liu MQ, Chen Y, et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell. 2020;182(1):50-58.e8. DOI: 10.1016/j.cell.2020.05.027
Karimi-Galougahi M, Yousefi-Koma A, Bakhshayeshkaram M, et al. 18FDG PET/CT scan reveals hypoactive orbitofrontal cortex in anosmia of COVID-19. Acad Radiol. 2020;27(7):1042-1043. DOI: 10.1016/j.acra.2020.04.030
Kaye R, Chang CWD, Kazahaya K, et al. COVID-19 anosmia reporting tool: initial findings. Otolaryngol Head Neck Surg. 2020;163(1):132-134. DOI: 10.1177/0194599820922992
Kermen F, Midroit M, Kuczewski N, et al. Topographical representation of odor hedonics in the olfactory bulb. Nat Neurosci. 2016;19(7):876-878. DOI: 10.1038/nn.4317
Klingenstein M, Klingenstein S, Neckel PH, et al. Evidence of SARS-CoV2 entry protein ACE2 in the human nose and olfactory bulb. bioRxiv preprint. 2020. DOI: 10.1101/2020.07.15.204602
Korber B, Fischer WM, Gnanakaran S, et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182(4):812-827.e19. DOI: 10.1016/j.cell.2020.06.043
Krolewski RC, Packard A, Schwob JE. Global expression profiling of globose basal cells and neurogenic progression within the olfactory epithelium. J Comp Neurol. 2013;521(4):833-859. DOI: 10.1002/cne.23204
Larsell O. The nervus terminalis. Ann Otol Rhinol Laryngol. 1950;59:414-438. DOI: 10.1177/000348945005900211
Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020;277(8):2251-2261. DOI: 10.1007/s00405-020-05965-1
Lechien JR, Chiesa-Estomba CM, Hans S, et al. Loss of smell and taste in 2013 European patients with mild to moderate COVID-19. Ann Intern Med. 2020. DOI: 10.7326/M20-2428
Lee Y, Min P, Lee S, Kim SW. Prevalence and Duration of Acute Loss of Smell or Taste in COVID-19 Patients. J Korean Med Sci. 2020;35(18):e174. DOI: 10.3346/jkms.2020.35.e174
Li W, Zhang C, Sui J, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24(8):1634-1643. DOI: 10.1038/sj.emboj.7600640
Li Q, Wu J, Nie J, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell. 2020. DOI: 10.1016/j.cell.2020.07.012
Li Z, Liu T, Yang N, et al. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med. 2020. DOI: 10.1007/s1168
Liang F. Sustentacular cell enwrapment of olfactory receptor neuronal dendrites: an update. Genes. 2020;11:493. DOI: 10.3390/genes11050493
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614-628. DOI: 10.1016/j.addr.2011.11.002
Lovato A, Antonini A, de Filippis C. Comment on “The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis”. Otolaryngol Head Neck Surg. 2020. DOI: 10.1177/0194599820934761
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan China. JAMA Neurol. 2020;77(6):1-9. DOI: 10.1001/jamaneurol.2020.1127
McCray PB, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007;81(2):813-821. DOI: 10.1128/JVI.02012-06
Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as port of Central Nervous System entry in COVID-19 patients. Preprint bioRxiv. 2020. DOI: 10.1101/2020.06.04.135012.
Menachery VD, Yount BL Jr, Sims AC, et al. SARS-like WIV1-CoV poised for human emergence. Proc Natl Acad Sci U S A. 2016;113(11):3048-3053. DOI: 10.1073/pnas.1517719113
Meng X, Deng Y, Dai Z, Meng Z. COVID-19 and anosmia: A review based on up-to-date knowledge. Am J Otolaryngol. 2020;41(5):102581. DOI: 10.1016/j.amjoto.2020.102581
Menni C, Sudre CH, Steves CJ, et al. Quantifying additional COVID-19 symptoms will save lives. Lancet. 2020;395(10241):e107-e108. DOI: 10.1016/S0140-6736(20)31281-2
Menni C, Valdes AM, Freidin MB, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med. 2020;26(7):1037-1040. DOI: 10.1038/s41591-020-0916-2
Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55-58. DOI: 10.1016/j.ijid.2020.03.062
Naeini AS, Karimi-Galougahi M, Raad N, et al. Paranasal sinuses computed tomography findings in anosmia of COVID-19. Am J Otolaryngol. 2020;41(6):102636. DOI: 10.1016/j.amjoto.2020.102636
Naik BS, Shetty N, Maben EV. Drug-induced taste disorders. Eur J Intern Med. 2010;21(3):240-243. DOI: 10.1016/j.ejim.2010.01.017
Nampoothiri S, Sauve S, Ternier G, et al. The hypothalamus as a hub for putative SARS-CoV-2 brain infection. bioRxiv preprint. 2020. DOI: 10.1101/2020.06.08.139329
Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264-7275. DOI: 10.1128/JVI.00737-08
Nickell MD, Breheny P, Stromberg AJ, McClintock TS. Genomics of mature and immature olfactory sensory neurons. J Comp Neurol. 2012;520(12):2608-2629. DOI: 10.1002/cne.23052
Norwood JN, Zhang Q, Card D, et al. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. Elife. 2019;8:e44278. DOI: 10.7554/eLife.44278
Oelschläger HA, Buhl EH, Dann JF. Development of the nervus terminalis in mammals including toothed whales and humans. Ann N Y Acad Sci. 1987;519:447-464. DOI: 10.1111/j.1749-6632.1987.tb36316.x
Oliviero A, de Castro F, Coperchini F, et al. COVID-19 pulmonary and olfactory dysfunctions: Is the chemokine CXCL10 the common denominator? Neuroscientist. 2020. DOI: 10.1177/1073858420939033
Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Intern Med. 2020;M20-3012. DOI: 10.7326/M20-3012
Ou J, Zhou Z, Zhang J, et al. RBD mutations from circulating SARS-CoV-2 strains enhance the structure stability and infectivity of the spike protein. bioRxiv preprint. 2020. DOI: 10.1101/2020.03.15.991844
Pal R, Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. J Endocrinol Invest. 2020;43(7):1027-1031. DOI: 10.1007/s40618-020-01276-8
Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699-702. DOI: 10.1002/jmv.25915
Parma V, Ohla K, Veldhuizen MG, et al. More than just smell—COVID-19 is associated with severe impairment of smell, taste, and chemesthesis. MedRxiv preprint. 2020. DOI: 10.1101/2020.05.04.20090902
Passarelli PC, Lopez MA, Mastandrea Bonaviri GN, et al. Taste and smell as chemosensory dysfunctions in COVID-19 infection. Am J Dent. 2020;33(3):135-137.
Perlman S, Evans G, Afifi A. Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. J Exp Med. 1990;172(4):1127-1132. DOI: 10.1084/jem.172.4.1127
Phelan J, Deelder W, Ward D, et al. Controlling the SARS-CoV-2 outbreak, insights from large scale whole genome sequences generated across the world. Preprint bioRxiv. 2020. DOI: 10.1101/2020.04.28.066977
Plakhov IV, Arlund EE, Aoki C, Reiss CS. The earliest events in vesicular stomatitis virus infection of the murine olfactory neuroepithelium and entry of the central nervous system. Virology. 1995;209(1):257-262. DOI: 10.1006/viro.1995.1252
Politi LS, Salsano E, Grimaldi M. Magnetic Resonance Imaging Alteration of the Brain in a Patient With Coronavirus Disease 2019 (COVID-19) and Anosmia. JAMA Neurol. 2020;77(8):1028-1029. DOI: 10.1001/jamaneurol.2020.2125
Printza A, Constantinidis J. The role of self-reported smell and taste disorders in suspected COVID 19. Eur Arch Otorhinolaryngol. 2020;277(9):2625-2630. DOI: 10.1007/s00405-020-06069-6
Qiu C, Cui C, Hautefort C, et al. Olfactory and gustatory dysfunction as an early identifier of COVID-19 in adults and children: an international multicenter study. MedRxiv preprint. 2020. DOI: 10.1101/2020.05.13.20100198
Rockx B, Kuiken T, Herfst S, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368(6494):1012-1015. DOI: 10.1126/science.abb7314
Rodriguez S, Cao L, Rickenbacher GT, et al. Innate immune signaling in the olfactory epithelium reduces odorant receptor levels: modeling transient smell loss in COVID-19 patients. Preprint medRxiv. 2020. DOI: 10.1101/2020.06.14.20131128
Sadeghipour S, Mathias RA. Herpesviruses hijack host exosomes for viral pathogenesis. Semin Cell Dev Biol. 2017;67:91-100. DOI: 10.1016/j.semcdb.2017.03.005
Sakano H. Neural map formation in the mouse olfactory system. Neuron. 2010;67(4):530-542. DOI: 10.1016/j.neuron.2010.07.003
Saraiva LR, Ibarra-Soria X, Khan M, et al. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci Rep. 2015;5:18178. DOI: 10.1038/srep18178
Sato T, Ueha R, Goto T, et al. Expression of ACE2 and TMPRSS2 proteins in the upper and lower aerodigestive tracts of rats. Preprint bioRxiv. 2020. DOI: 10.1101/2020.05.14.097204.
Sayin I, Yazici ZM. Taste and Smell Impairment in SARS-CoV-2 Recovers Early and Spontaneously: Experimental Data Strongly Linked to Clinical Data. ACS Chem Neurosci. 2020;11(14):2031-2033. DOI: 10.1021/acschemneuro.0c00296
Schwob JE. Neural regeneration and the peripheral olfactory system. Anat Rec. 2002;269(1):33-49. DOI: 10.1002/ar.10047
Schwob JE, Youngentob SL, Mezza RC. Reconstitution of the rat olfactory epithelium after methyl bromide-induced lesion. J Comp Neurol. 1995;359(1):15-37. DOI: 10.1002/cne.903590103
Sedaghat AR, Gengler I, Speth MM. Olfactory dysfunction: a highly prevalent symptom of COVID-19 with public health significance. Otolaryngol Head Neck Surg. 2020;163(1):12-15. DOI: 10.1177/0194599820926464
Serrano-Castro PJ, Estivill-Torrús G, Cabezudo-García P, et al. Impact of SARS-CoV-2 infection on neurodegenerative and neuropsychiatric diseases: a delayed pandemic? Neurologia. 2020;35:245-251. DOI: 10.1016/j.nrl.2020.04.002
Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221-224. DOI: 10.1038/s41586-020-2179-y
Sia SF, Yan LM, Chin AWH, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583(7818):834-838. DOI: 10.1038/s41586-020-2342-5
Soler ZM, Patel ZM, Turner JH, Holbrook EH. A primer on viral-associated olfactory loss in the era of COVID-19. Int Forum Allergy Rhinol. 2020;10(7):814-8120. DOI: 10.1002/alr.22578
Strafella C, Caputo V, Termine A, et al. Analysis of ACE2 genetic variability among populations highlights a possible link with COVID19-related neurological complications. Research Square preprint. 2020. DOI: 10.21203/rs.3.rs-28871/v1
Streeck H. Wir haben neue Symptome entdeckt. 2020. URL: https://www.faz.net/aktuell/gesellschaft/gesundheit/coronavirus/neue-corona-symptome-entdeckt-virologe-hendrik-streeck-zum-virus-16681450.html?GEPC=s3
Strotmann J, Breer H. Internalization of odorant-binding proteins into the mouse olfactory epithelium. Histochem Cell Biol. 2011;136(3):357-369. DOI: 10.1007/s00418-011-0850-y
Sun J, Zhuang Z, Zheng J, et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell. 2020. DOI: 10.1016/j.cell.2020.06.010
Sun SH, Chen Q, Gu HJ, et al. A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. Cell Host Microbe. 2020;28(1):124-133.e4. DOI: 10.1016/j.chom.2020.05.020
Tong JY, Wong A, Zhu D, et al. The prevalence of olfactory and gustatory dysfunction in COVID-19 patients: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2020;163(1):3-11. DOI: 10.1177/0194599820926473
Torabi A, Mohammadbagheri E, Akbari Dilmaghani N, et al. Proinflammatory Cytokines in the Olfactory Mucosa Result in COVID-19 Induced Anosmia. ACS Chem Neurosci. 2020;11(13):1909-1913. DOI: 10.1021/acschemneuro.0c00249
Tseng CT, Huang C, Newman P, et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-converting enzyme 2 virus receptor. J Virol. 2007;81(3):1162-1173. DOI: 10.1128/JVI.01702-06
Tudrej B, Sebo P, Lourdoaux J, et al. Self-reported loss of smell and taste in SARS-CoV-2 patients: primary care data to guide future early detection strategies. Research Square preprint. 2020. DOI: 10.21203/rs.3.rs-28701/v1
Ueha R, Kondo K, Kagoya R, et al. Understanding olfactory dysfunction in COVID-19: Expression of ACE2, TMPRSS2 and Furin in the nose and olfactory bulb in human and mice. Preprint bioRxiv. 2020. DOI: 10.1101/2020.05.15.097352
van Dorp L, Richard D, Tan CCS, et al. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Preprint bioRxiv. 2020. DOI: 10.1101/2020.05.21.108506
Vaira LA, Deiana G, Fois AG, et al. Objective evaluation of anosmia and ageusia in COVID-19 patients: single-center experience on 72 cases. Head Neck. 2020;42(6):1252-1258. DOI: 10.1002/hed.26204
Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope. 2020;130(7):1787. DOI: 10.1002/lary.28692
Vaira LA, Salzano G, Fois AG, et al. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int Forum Allergy Rhinol. 2020. DOI: 10.1002/alr.22593
van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol. 2015;235(2):277-287. DOI: 10.1002/path.4461
Vedin V, Slotnick B, Berghard A. Zonal ablation of the olfactory sensory neuroepithelium of the mouse: effects on odorant detection. Eur J Neurosci. 2004;20(7):1858-1864. DOI: 10.1111/j.1460-9568.2004.03634.x
Villar PS, Delgado R, Vergara C, et al. Energy Requirements of Odor Transduction in the Chemosensory Cilia of Olfactory Sensory Neurons Rely on Oxidative Phosphorylation and Glycolytic Processing of Extracellular Glucose. J Neurosci. 2017;37(23):5736-5743. DOI: 10.1523/JNEUROSCI.2640-16.2017
von Bartheld CS, Hagen MM, Butowt R. Prevalence of chemosensory dysfunction in COVID-19 patients: a systematic review and meta-analysis reveals significant ethnic differences. MedRxiv preprint. 2020. DOI: 10.1101/2020.06.15.20132134
Walsh-Messinger J, Sahar K, Manis H, et al. Standardized testing demonstrates altered odor detection sensitivity and hedonics in asymptomatic college students as SARS-CoV-2 emerged locally. Preprint medRxiv. 2020. DOI: 10.1101/2020.06.17.20106302
Wang K, Chen W, Zhou YS, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. Preprint bioRxiv. 2020. DOI: 10.1101/2020.03.14.988345.
Wang L, Shen Y, Li M, et al. Clinical manifestations and evidence of neurological involvement in 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. J Neurol. 2020. DOI: 10.1007/s00415-020-09974-2
Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323(18):1843-1844. DOI: 10.1001/jama.2020.3786
Wang Z, Yang B, Li Q, et al. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan China. Clin Infect Dis. 2020;71(15):769-777. DOI: 10.1093/cid/ciaa272
Wang Z, Zhou J, Marshall B, et al. SARS-CoV-2 receptor ACE2 is enriched in a subpopulation of mouse tongue epithelial cells in nongustatory papillae but not in taste buds or embryonic oral epithelium. ACS Pharmacol Transl Sci. 2020;3(4):749-758. DOI: 10.1021/acsptsci.0c00062
Williams FMK, Freidin MB, Mangino M, et al. Self-Reported Symptoms of COVID-19, Including Symptoms Most Predictive of SARS-CoV-2 Infection, Are Heritable. Twin Res Hum Genet. 2020;23(6):316-321. DOI: 10.1017/thg.2020.85.
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-269. DOI: 10.1038/s41586-020-2008-3
Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020;87:18-22. DOI: 10.1016/j.bbi.2020.03.031
Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. DOI: 10.1038/s41368-020-0074-x
Xydakis MS, Dehgani-Mobaraki P, Holbrook EH, et al. Smell and taste dysfunction in patients with COVID-19. Lancet Infect Dis. 2020;20(9):1015-1016. DOI: 10.1016/S1473-3099(20)30293-0
Yan CH, Faraji F, Prajapati DP, et al. Self-reported olfactory loss associates with outpatient clinical course in Covid-19. Int Forum Allergy Rhinol. 2020;10:821-831. DOI: 10.1002/alr.22592
Yang XH, Deng W, Tong Z, et al. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med. 2007;57(5):450-459.
Zhang L, Jackson CB, Mou H, et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv. 2020. DOI: 10.1101/2020.06.12.148726
Zhou Z, Kang H, Li S, Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol. 2020;267(8):2179-2184. DOI: 10.1007/s00415-020-09929-7
Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020;181(5):1016-1035.e19. DOI: 10.1016/j.cell.2020.04.035
Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382(12):1177-1179. DOI: 10.1056/NEJMc2001737
Zubair AS, McAlpine LS, Gardin T, et al. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020;77(8):1018-1027. DOI: 10.1001/jamaneurol.2020.2065.
Опубликован
Как цитировать
Лицензия
Copyright (c) 2021 Р. Бутовт, К. С. фон Бартельд
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.