Физиологические и патофизиологические предпосылки репаративного потенциала эпикарда
Авторы
- Е. В. Тимофеев Санкт-Петербургский государственный педиатрический медицинский университет https://orcid.org/0000-0001-9607-4028
- Я. Э. Булавко Университет Западного Онтарио https://orcid.org/0000-0003-0879-846X
Ключевые слова:
эпикард, стимуляция, инфаркт миокарда, цитокины, трансформирующий фактор роста, прогениторные клетки эпикарда, эпителиально-мезенхимальная трансформация, морфогенез сердцаАннотация
Сердечно-сосудистые заболевания и, в частности, инфаркт миокарда, занимают главенствующее место в структуре смертности и инвалидизации во всём мире. Отдалённые осложнения инфаркта — ремоделирование миокарда, хроническая сердечная недостаточность, нарушения ритма, аневризмы левого желудочка существенно снижают качество жизни больных, приводят к повышению уровня инвалидизации и к серьёзным финансовым затратам. Актуальным направлением медицины является поиск механизмов кардиальной регенерации после случившегося инфаркта миокарда.
Предположение о регенеративном потенциале эпикарда основано на результатах прицельного изучения его свойств и характеристик. В процессе эмбриогенеза эпикард продуцирует большое количество мультипотентных клеток-предшественников, которые в дальнейшем подвергаются эпителиально-мезенхимальной трансформации. Эти клетки мигрируют в толщу миокарда и дают начало различным кардиальным типам клеток, в том числе — кардиомиоцитам. Эпикард участвует в синтезе паракринных факторов, которые обеспечивают рост коронарных сосудов, а также дифференцировку и развитие миокарда в целом. В основе разрабатываемых механизмов восстановления миокарда лежат различные способы стимуляции активности эпикарда по эмбриональному пути.
В статье структурируется имеющаяся в настоящее время информация о репаративном потенциале эпикарда — физиологические аспекты в эмбриогенезе, а также его реакции на повреждение миокарда.
Биография автора
Е. В. Тимофеев, Санкт-Петербургский государственный педиатрический медицинский университет
Доктор медицинских наук, профессор кафедры пропедевтики внутренних болезней
Библиографические ссылки
Smits AM, Dronkers E, Goumans MJ. The epicardium as a source of multipotent adult cardiac progenitor cells: Their origin, role and fate. Pharmacological Research. 2018;127:129-140. DOI: https://doi.org/10.1016/j.phrs.2017.07.020
Trembley MA, Velasquez LS, Bentley KLDM, Small EM. Myocardin-related transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels. Development. 2015;142:21-30. DOI: https://doi.org/10.1242/dev.116418
Sanchez-Fernandez C, Rodriguez-Outeiriño L, Matias-Valiente L, et al. Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. Int J Mol Sci. 2022;23:3220. DOI: https://doi.org/10.3390/ijms23063220. EDN: https://elibrary.ru/YBJVFM
Olivey HE, Svensson EC. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ Res. 2010;(106):818-832. DOI: https://doi.org/10.1161/CIRCRESAHA.109.209197. EDN: https://elibrary.ru/NZPQTB
Wessels A, Perez-Pomares JM. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec Part A Discov Mol Cell Evol Biol. 2004;(276A):43-57. DOI: https://doi.org/10.1002/ar.a.10129
Lupu IE, Redpath AN, Smart N. Spatiotemporal analysis reveals overlap of key proepicardial markers in the developing murine heart. Stem Cell Rep. 2020;14:770-787. DOI: https://doi.org/10.1016/j.stemcr.2020.04.002. EDN: https://elibrary.ru/AMSNMK
Velecela V, Torres-Cano A, Garcia-Melero A, et al. Epicardial cell shape and maturation are regulated by Wt1 via transcriptional control of Bmp4. Development. 2019;146:dev178723. DOI: https://doi.org/10.1242/dev.178723
Risebro CA, Vieira JM, Klotz L, Riley PR. Characterisation of the human embryonic and foetal epicardium during heart development. Development. 2015;(142):3630-3636. DOI: https://doi.org/10.1242/dev.127621
Дергилев КВ, Комова АВ, Цоколаева ЗИ, и др. Эпикард как новая мишень для регенеративных технологий в кардиологии. Гены и клетки. 2020;15(2):33-40. [Dergilev KV, Komova AV, Tsokolaeva ZI, et al. Epicardium as a new target for regenerative technologies in cardiology. Genes and cells. 2020;15(2):33-40. (in Russ.)]. DOI: https://doi.org/10.23868/202004016. EDN: https://elibrary.ru/ZWNMPT
Kolander KD, Holtz ML, Cossette SM, et al. Epicardial GATA factors regulate early coronary vascular plexus formation. Dev Biol. 2014;(386):204-215. DOI: https://doi.org/10.1016/j.ydbio.2013.12.033
Sucov HM, Dyson E, Gumeringer CL, et al. RXRα mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev. 1994;8(9):1007-1018 DOI: https://doi.org/10.1101/gad.8.9.1007
Velecela V, Lettice LA, Chau Y-Y, et al. WT1 regulates the expression of inhibitory chemokines during heart development. Hum Mol Genet. 2013;22:5083-5095. DOI: https://doi.org/10.1093/hmg/ddt358
Lavine KJ, Yu K, White AC, et al. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell. 2005;(8):85-95. DOI: https://doi.org/10.1016/j.devcel.2004.12.002
Pennisi DJ, Mikawa T. FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation. Dev Biol. 2009;(328):148-159. DOI: https://doi.org/10.1016/j.ydbio.2009.01.023
Lavine KJ, White AC, Park C, et al. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 2006;20(12):1651-1666. DOI: https://doi.org/10.1101/gad.1411406
Lavine KJ, Ornitz DM. Fibroblast growth factors and Hedgehogs: at the heart of the epicardial signaling center. Trends Genet. 2008;24(1):33-40. DOI: https://doi.org/10.1016/j.tig.2007.10.007
Cavallero S, Shen H, Yi C, et al. CXCL12 Signaling Is Essential for Maturation of the Ventricular Coronary Endothelial Plexus and Establishment of Functional Coronary Circulation. Dev Cell. 2015;33(4):469-477. DOI: https://doi.org/10.1016/j.devcel.2015.03.018
Sharma B, Ho L, Ford GH, et al. Alternative Progenitor Cells Compensate to Rebuild the Coronary Vasculature in Elabela- and Apj-Deficient Hearts. Dev Cell. 2017;42(6):655-666.e3. DOI: https://doi.org/10.1016/j.devcel.2017.08.008
Compton LA, Potash DA, Mundell NA, Barnett JV. Transforming growth factor-beta induces loss of epithelial character and smooth muscle cell differentiation in epicardial cells. Dev Dyn. 2006;235(1):82-93. DOI: https://doi.org/10.1002/dvdy.20629
Majidinia M, Aghazadeh J, Jahanban-Esfahlani R, Yousefi B. The roles of Wnt/β-catenin pathway in tissue development and regenerative medicine. J Cell Physiol. 2018;233(8):5598-5612. DOI: https://doi.org/10.1002/jcp.26265
Schlueter J, Brand T. Origin and fates of the proepicardium. Aswan Hear Cent Sci Pract Ser. 2011;(11). DOI: https://doi.org/10.5339/ahcsps.2011.11
Rodgers LS, Lalani S, Runyan RB, Camenisch TD. Differential growth and multicellular villi direct proepicardial translocation to the developing mouse heart. Dev Dyn. 2008;237(1):145-152. DOI: https://doi.org/10.1002/dvdy.21378
Plavicki JS, Hofsteen P, Yue MS, et al. Multiple modes of proepicardial cell migration require heartbeat. BMC Dev Biol. 2014;14:18. DOI: https://doi.org/10.1186/1471-213X-14-18. EDN: https://elibrary.ru/HXYZKK
Limana F, Zacheo A, Mocini D, et al. Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res. 2007;101(12):1255-1265. DOI: https://doi.org/10.1161/CIRCRESAHA.107.150755
Antonopoulos AS, Antoniades C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J Physiol. 2017;595(12):3907-3917. DOI: https://doi.org/10.1113/JP273049
Чёрная А, Камышанская ИГ, Пчелин ИЮ. Физиологическое и патологическое значение перикардиального жира для сердца и прилежащих сосудов. Juvenis Scientia. 2022;8(1):32-41. [Chiornaya A, Kamyshanskaya IG, Pchelin IY. Physiological and Pathological Significance of Pericardial Fat for the Heart and Adjacent Vessels. Juvenis Scientia. 2022;8(1):32-41. (in Russ.)]. DOI: https://doi.org/10.32415/jscientia_2022_8_1_32-41. EDN: https://elibrary.ru/JZAEYE
Tandon P, Miteva YV, Kuchenbrod LM, et al. Tcf21 regulates the specification and maturation of proepicardial cells. Development. 2013;140(11):2409-2421. DOI: https://doi.org/10.1242/dev.093385. EDN: https://elibrary.ru/RKSTCD
Kirschner KM, Wagner N, Wagner KD, et al. The Wilms tumor suppressor Wt1 promotes cell adhesion through transcriptional activation of the alpha4integrin gene. J Biol Chem. 2006;281(42):31930-31939. DOI: https://doi.org/10.1074/jbc.M602668200
Cai CL, Martin JC, Sun Y, et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008;454(7200):104-108. DOI: https://doi.org/10.1038/nature06969
Wu SP, Dong XR, Regan JN, et al. Tbx18 regulates development of the epicardium and coronary vessels. Dev Biol. 2013;383(2):307-320. DOI: https://doi.org/10.1016/j.ydbio.2013.08.019
Takeichi M, Nimura K, Mori M, et al. The transcription factors Tbx18 and Wt1 control the epicardial epithelial-mesenchymal transition through bi-directional regulation of Slug in murine primary epicardial cells. PLoS One. 2013;8(2):e57829. DOI: https://doi.org/10.1371/journal.pone.0057829
Masters M, Riley PR. The epicardium signals the way towards heart regeneration. Stem Cell Res. 2014;13(3 Pt B):683-692. DOI: https://doi.org/10.1016/j.scr.2014.04.007
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178-196. DOI: https://doi.org/10.1038/nrm3758. EDN: https://elibrary.ru/SQQMGV
von Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res. 2012;110(12):1628-1645. DOI: https://doi.org/10.1161/CIRCRESAHA.111.259960
Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016;166(1):21-45. DOI: https://doi.org/10.1016/j.cell.2016.06.028. EDN: https://elibrary.ru/FZXQVG
Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta. 2008;1778(3):660-669. DOI: https://doi.org/10.1016/j.bbamem.2007.07.012
Wu M, Smith CL, Hall JA, et al. Epicardial spindle orientation controls cell entry into the myocardium. Dev Cell. 2010;19(1):114-125. DOI: https://doi.org/10.1016/j.devcel.2010.06.011
Mannherz HG, Hannappel E. The beta-thymosins: intracellular and extracellular activities of a versatile actin binding protein family. Cell Motil Cytoskeleton. 2009;66(10):839-851. DOI: https://doi.org/10.1002/cm.20371
Braitsch CM, Combs MD, Quaggin SE, Yutzey KE. Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart. Dev Biol. 2012;368(2):345-357. DOI: https://doi.org/10.1016/j.ydbio.2012.06.002
Acharya A, Baek ST, Huang G, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012;139(12):2139-2149. DOI: https://doi.org/10.1242/dev.079970
Grieskamp T, Rudat C, Lüdtke TH, et al. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 2011;108(7):813-823. DOI: https://doi.org/10.1161/CIRCRESAHA.110.228809
Witty AD, Mihic A, Tam RY, et al. Generation of the epicardial lineage from human pluripotent stem cells. Nat Biotechnol. 2014;32(10):1026-1035. DOI: https://doi.org/10.1038/nbt.3002
Barnes RM, Firulli BA, VanDusen NJ, et al. Hand2 loss-of-function in Hand1-expressing cells reveals distinct roles in epicardial and coronary vessel development. Circ Res. 2011;108(8):940-949. DOI: https://doi.org/10.1161/CIRCRESAHA.110.233171
Chen W, Bian W, Zhou Y, Zhang J. Cardiac Fibroblasts and Myocardial Regeneration. Front Bioeng Biotechnol. 2021;9:599928. DOI: https://doi.org/10.3389/fbioe.2021.599928. EDN: https://elibrary.ru/QJSEWR
Red-Horse K, Ueno H, Weissman IL, Krasnow MA. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464(7288):549-553. DOI: https://doi.org/10.1038/nature08873
Wu B, Zhang Z, Lui W, et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell. 2012;151(5):1083-1096. DOI: https://doi.org/10.1016/j.cell.2012.10.023
Cano E, Carmona R, Ruiz-Villalba A, et al. Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proc Natl Acad Sci U S A. 2016;113(3):656-661. DOI: https://doi.org/10.1073/pnas.1509834113
van Wijk B, Gunst QD, Moorman AF, van den Hoff MJ. Cardiac regeneration from activated epicardium. PLoS One. 2012;7(9):e44692. DOI: https://doi.org/10.1371/journal.pone.0044692
Zhou B, Honor LB, He H, et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest. 2011;121(5):1894-1904. DOI: https://doi.org/10.1172/JCI45529
Smits AM, Riley PR. Epicardium-Derived Heart Repair. J Dev Biol. 2014;2(2):84-100. DOI: https://doi.org/10.3390/jdb2020084
Cao J, Poss KD. The epicardium as a hub for heart regeneration. Nat Rev Cardiol. 2018;15(10):631-647. DOI: https://doi.org/10.1038/s41569-018-0046-4. EDN: https://elibrary.ru/SGIFLB
Moerkamp AT, Lodder K, van Herwaarden T, et al. Human fetal and adult epicardial-derived cells: a novel model to study their activation. Stem Cell Res Ther. 2016;7(1):174. DOI: https://doi.org/10.1186/s13287-016-0434-9. EDN: https://elibrary.ru/IHPBEI
Lam NT, Sadek HA. Neonatal Heart Regeneration: Comprehensive Literature Review. Circulation. 2018;138(4):412-423. DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.033648
Cai W, Tan J, Yan J, et al. Limited Regeneration Potential with Minimal Epicardial Progenitor Conversions in the Neonatal Mouse Heart after Injury. Cell Rep. 2019;28(1):190-201.e3. DOI: https://doi.org/10.1016/j.celrep.2019.06.003
Limana F, Bertolami C, Mangoni A, et al. Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. J Mol Cell Cardiol. 2010;48(4):609-618. DOI: https://doi.org/10.1016/j.yjmcc.2009.11.008
Huang GN, Thatcher JE, McAnally J, et al. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science. 2012;338(6114):1599-1603. DOI: https://doi.org/10.1126/science.1229765
Porrello ER, Mahmoud AI, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078-1080. DOI: https://doi.org/10.1126/science.1200708
Foglio E, Puddighinu G, Fasanaro P, et al. Exosomal clusterin, identified in the pericardial fluid, improves myocardial performance following MI through epicardial activation, enhanced arteriogenesis and reduced apoptosis. Int J Cardiol. 2015;197:333-347. DOI: https://doi.org/10.1016/j.ijcard.2015.06.008
Puente BN, Kimura W, Muralidhar SA, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157(3):565-579. DOI: https://doi.org/10.1016/j.cell.2014.03.032. EDN: https://elibrary.ru/SSHOOX
Kimura W, Xiao F, Canseco DC, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523(7559):226-230. DOI: https://doi.org/10.1038/nature14582
Kanisicak O, Khalil H, Ivey MJ, et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun. 2016;7:12260. DOI: https://doi.org/10.1038/ncomms12260
Suffee N, Moore-Morris T, Jagla B, et al. Reactivation of the Epicardium at the Origin of Myocardial Fibro-Fatty Infiltration During the Atrial Cardiomyopathy. Circ Res. 2020;126(10):1330-1342. DOI: https://doi.org/10.1161/CIRCRESAHA.119.316251. EDN: https://elibrary.ru/SHBWXN
Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 2016;365(3):563-581. DOI: https://doi.org/10.1007/s00441-016-2431-9. EDN: https://elibrary.ru/GRFDCO
Zhou B, Ma Q, Rajagopal S, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008;454(7200):109-113. DOI: https://doi.org/10.1038/nature07060
Volz KS, Jacobs AH, Chen HI, et al. Pericytes are progenitors for coronary artery smooth muscle. Elife. 2015;4:e10036. DOI: https://doi.org/10.7554/eLife.10036
Yamaguchi Y, Cavallero S, Patterson M, et al. Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARγ activation. Proc Natl Acad Sci U S A. 2015;112(7):2070-2075. DOI: https://doi.org/10.1073/pnas.1417232112
Sereti KI, Nguyen NB, Kamran P, et al. Analysis of cardiomyocyte clonal expansion during mouse heart development and injury. Nat Commun. 2018;9(1):754. DOI: https://doi.org/10.1038/s41467-018-02891-z. EDN: https://elibrary.ru/DZBNHJ
Farbehi N, Patrick R, Dorison A, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. 2019;8:e43882. DOI: https://doi.org/10.7554/eLife.43882
Чумасов ЕИ, Петрова ЕС, Коржевский ДЭ. Изучение строения развивающегося эпикарда и особенностей васкуляризации в сердце новорождённых крыс. Актуальные вопросы ветеринарной биологии. 2017;2(34):12-18. [Chumasov EI, Petrova ES, Korzhevsky DE. Study of the structure of developing epicardium and vaskularization in the heart of newborn rats. Current issues of veterinary biology. 2017;2(34):12-18. (in Russ)]. DOI: https://doi.org/10.1016/j.redox.2017.01.007. EDN: https://elibrary.ru/YQPEHN
He L, Huang X, Kanisicak O, et al. Preexisting endothelial cells mediate cardiac neovascularization after injury. J Clin Invest. 2017;127(8):2968-2981. DOI: https://doi.org/10.1172/JCI93868
Lepilina A, Coon AN, Kikuchi K, et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006;127(3):607-619. DOI: https://doi.org/10.1016/j.cell.2006.08.052. EDN: https://elibrary.ru/MGBHCL
Christoffels VM, Grieskamp T, Norden J, Mommersteeg MT, Rudat C, Kispert A. Tbx18 and the fate of epicardial progenitors. Nature. 2009;458(7240):E8-E10. DOI: https://doi.org/10.1038/nature07916
Hesse J, Leberling S, Boden E, et al. CD73-derived adenosine and tenascin-C control cytokine production by epicardium-derived cells formed after myocardial infarction. FASEB J. 2017;31(7):3040-3053. DOI: https://doi.org/10.1096/fj.201601307R
Ramjee V, Li D, Manderfield LJ, et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest. 2017;127(3):899-911. DOI: https://doi.org/10.1172/JCI88759
Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11(5):255-265. DOI: https://doi.org/10.1038/nrcardio.2014.28
Guadix JA, Orlova VV, Giacomelli E, et al. Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells. Stem Cell Reports. 2017;9(6):1754-1764. DOI: https://doi.org/10.1016/j.stemcr.2017.10.023
Winter EM, Grauss RW, Hogers B, et al. Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation. 2007;116(8):917-927. DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.668178
Winter EM, van Oorschot AA, Hogers B, et al. A new direction for cardiac regeneration therapy: application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells. Circ Heart Fail. 2009;2(6):643-653. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.108.843722
Boopathy AV, Martinez MD, Smith AW, et al. Intramyocardial Delivery of Notch Ligand-Containing Hydrogels Improves Cardiac Function and Angiogenesis Following Infarction. Tissue Eng Part A. 2015;21(17-18):2315-2322. DOI: https://doi.org/10.1089/ten.TEA.2014.0622
Bao W, Ballard VL, Needle S, et al. Cardioprotection by systemic dosing of thymosin beta four following ischemic myocardial injury. Front Pharmacol. 2013;4:149. DOI: https://doi.org/10.3389/fphar.2013.00149
Peng H, Xu J, Yang XP, et al. Thymosin-β4 prevents cardiac rupture and improves cardiac function in mice with myocardial infarction. Am J Physiol Heart Circ Physiol. 2014;307(5):H741-H751. DOI: https://doi.org/10.1152/ajpheart.00129.2014. EDN: https://elibrary.ru/UUVARB
Chiu LL, Reis LA, Radisic M. Controlled delivery of thymosin β4 for tissue engineering and cardiac regenerative medicine. Ann N Y Acad Sci. 2012;1269:16-25. DOI: https://doi.org/10.1111/j.1749-6632.2012.06718.x
Chen S, Shimoda M, Chen J, Grayburn PA. Stimulation of adult resident cardiac progenitor cells by durable myocardial expression of thymosin beta 4 with ultrasound-targeted microbubble delivery. Gene Ther. 2013;20(2):225-233. DOI: https://doi.org/10.1038/gt.2012.89
Дергилев КВ, Василец ЮД, Цоколаева ЗИ, и др. Перспективы клеточной терапии инфаркта миокарда и сердечной недостаточности на основе клеток кардиосфер. Терапевтический архив. 2020;92(4):111-120. [Dergilev KV, Vasilets YD, Tsokolaeva ZI, et al. Perspectives of cell therapy for myocardial infarction and heart failure based on cardiosphere cells. Therapeutic Archive. 2020;92(4):111-120. (in Russ.)]. DOI: https://doi.org/10.26442/00403660.2020.04.000634. EDN: https://elibrary.ru/BCFIOG
Zhao J, Cao H, Tian L, et al. Efficient Differentiation of TBX18+/WT1+ Epicardial-Like Cells from Human Pluripotent Stem Cells Using Small Molecular Compounds. Stem Cells Dev. 2017;26(7):528-540. DOI: https://doi.org/10.1089/scd.2016.0208
Sasaki T, Hwang H, Nguyen C, et al. The small molecule Wnt signaling modulator ICG-001 improves contractile function in chronically infarcted rat myocardium. PLoS One. 2013;8(9):e75010. DOI: https://doi.org/10.1371/journal.pone.0075010
Bao X, Lian X, Hacker TA, et al. Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nat Biomed Eng. 2016;1:0003. DOI: https://doi.org/10.1038/s41551-016-0003
Тимофеев ЕВ, Булавко ЯЭ. Стимуляция эпикарда в качестве источника репарации миокарда: от эксперимента к клинической практике. Педиатр. 2024;15(5):71-80. [Timofeev ЕV, Bulavko YaE. Stimulation of the epicardium as a source of myocardial repair: from experiment to clinical practice. Pediatrician (SPb). 2024;15(5):71-80. (in Russ.)].
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2024 Тимофеев Е.В., Булавко Я.Э.

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.