Медиаторы воспаления при большом депрессивном и биполярном расстройствах
Авторы
- С. Полетти Научный институт Сан-Раффаэле IRCCS
- М. Д. Мацца Научный институт Сан-Раффаэле IRCCS
- Ф. Бенедетти Научный институт Сан-Раффаэле IRCCS
Аннотация
Большое депрессивное расстройство (БДР) и биполярное расстройство (БР) являются заболеваниями, которые часто приводят к утрате трудоспособности и характеризуются различными психопатологическими, нейровизуализационными и когнитивными профилями. В последние десятилетия в качестве основного фактора в патофизиологии этих расстройств всё чаще рассматривается дисрегуляция иммунной системы. Было исследовано несколько аспектов иммунной дисрегуляции, включая изменения, которые затрагивают цитокины низкоинтенсивного воспаления, хемокины, различные типы клеток, экспрессию генов и маркеры как периферической, так и центральной активации иммунной системы. Понимание отличий иммунных профилей, характеризующих эти два заболевания, действительно имеет существенное значение для дифференциальной диагностики и реализации персонализированных стратегий лечения. В этой статье мы провели обзор современной литературы по дисрегуляции иммунной системы, сосредоточив наше внимание на исследованиях, в которых маркеры воспаления использовались для дифференцирования БДР и БР. Имеющиеся работы по данной теме характеризуются высокой гетерогенностью, что отражает гетерогенность и самих расстройств. Общие изменения в иммунной системе включают высокие уровни провоспалительных цитокинов, таких как IL‑6 и TNF-α. С другой стороны, при БР отмечается бóльшая вовлечённость хемокинов и маркеров, связанных с врождённым иммунитетом, а также динамические изменения Т-клеток с дефектами дифференцировки в детстве и последующей нормализацией во взрослом возрасте, в то время как при БДР наблюдается повышение уровня классических медиаторов иммунного ответа, таких как IL‑4 и IL‑10, в сочетании с признаками старения иммунной системы.
Оригинал статьи: Poletti S, Mazza MG, Benedetti F. Inflammatory mediators in major depression and bipolar disorder. Transl Psychiatry. 2024;(14):247. DOI: 10.1038/s41398-024-02921-z.
Статья переведена на русский язык и опубликована согласно условиям лицензии Creative Commons Attribution (CC BY 4.0).
Библиографические ссылки
Kessler RC, Akiskal HS, Ames M, et al. Prevalence and effects of mood disorders on work performance in a nationally representative sample of U.S. workers. Am J Psychiatry. 2006;163:1561–8. doi:10.1176/ajp.2006.163.9.1561.
Steel Z, Marnane C, Iranpour C, et al. The global prevalence of common mental disorders: a systematic review and meta-analysis 1980-2013. Int J Epidemiol. 2014;43:476–93. doi:10.1093/ije/dyu038.
McIntyre RS, Berk M, Brietzke E, et al. Bipolar disorders. Lancet. 2020;396:1841–56. doi:10.1016/S0140-6736(20)31544-0.
Taylor DM, Barnes TRE, Young AH. The Maudsley prescribing guidelines in psychiatry. New Jersey: John Wiley & Sons; 2021.
Judd LL, Akiskal HS, Schettler PJ, et al. A prospective investigation of the natural history of the long-term weekly symptomatic status of bipolar II disorder. Arch Gen Psychiatry. 2003;60:261–9. doi:10.1001/archpsyc.60.3.261.
McIntyre RS, Zimmerman M, Goldberg JF, First MB. Differential diagnosis of major depressive disorder versus bipolar disorder: current status and best clinical practices. J Clin Psychiatry. 2019;80:ot18043ah2. .
Hirschfeld RM. Differential diagnosis of bipolar disorder and major depressive disorder. J Affect Disord. 2014;169:S12–16. doi:10.1016/S0165-0327(14)70004-7.
Pacchiarotti I, Bond DJ, Baldessarini RJ, et al. The International Society for Bipolar Disorders (ISBD) Task Force report on antidepressant use in bipolar disorders. Am J Psychiatry. 2013;170:1249–62. doi:10.1176/appi.ajp.2013.13020185.
Vieta E. Antidepressants in bipolar I disorder: never as monotherapy. Am J Psychiatry. 2014;171:1023–6. doi:10.1176/appi.ajp.2014.14070826.
Maes M, Vandoolaeghe E, Ranjan R, et al. Increased serum interleukin-1-receptor-antagonist concentrations in major depression. J Affect Disord. 1995;36:29–36. doi:10.1016/0165-0327(95)00049-6.
Maes M, Yirmyia R, Noraberg J, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis. 2009;24:27–53. doi:10.1007/s11011-008-9118-1.
Blume J, Douglas SD, Evans DL. Immune suppression and immune activation in depression. Brain Behav Immun. 2011;25:221–9. doi:10.1016/j.bbi.2010.10.008.
Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci. 2016;17:497–511. doi:10.1038/nrn.2016.69.
Simon MS, Schiweck C, Arteaga-Henríquez G, et al. Monocyte mitochondrial dysfunction, inflammaging, and inflammatory pyroptosis in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110391. doi:10.1016/j.pnpbp.2021.110391.
Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol Rev. 2018;98:477–504. doi:10.1152/physrev.00039.2016.
Najjar S, Pearlman DM, Alper K, et al. Neuroinflammation and psychiatric illness. J Neuroinflammation. 2013;10:43. doi:10.1186/1742-2094-10-43.
Benedetti F, Aggio V, Pratesi ML, et al. Neuroinflammation in bipolar depression. Front Psychiatry. 2020;11:71. doi:10.3389/fpsyt.2020.00071.
Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754. doi:10.3389/fimmu.2018.00754.
Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem. 2004;279:48487–90. doi:10.1074/jbc.R400025200.
Felger JC, Haroon E, Patel TA, et al. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol Psychiatry. 2020;25:1301–11. doi:10.1038/s41380-018-0096-3.
Jeon MT, Kim KS, Kim ES, et al. Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev. 2021;68:101333. doi:10.1016/j.arr.2021.101333.
Kuhlmann CR, Librizzi L, Closhen D, et al. Mechanisms of C-reactive protein-induced blood-brain barrier disruption. Stroke. 2009;40:1458–66. doi:10.1161/STROKEAHA.108.535930.
Haapakoski R, Mathieu J, Ebmeier KP, et al. Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun. 2015;49:206–15. doi:10.1016/j.bbi.2015.06.001.
Cakici N, Sutterland AL, Penninx B, et al. Altered peripheral blood compounds in drug-naive first-episode patients with either schizophrenia or major depressive disorder: a meta-analysis. Brain Behav Immun. 2020;88:547–58. doi:10.1016/j.bbi.2020.04.039.
Fernandes BS, Steiner J, Molendijk ML, et al. C-reactive protein concentrations across the mood spectrum in bipolar disorder: a systematic review and meta-analysis. Lancet Psychiatry. 2016;3:1147–56. doi:10.1016/S2215-0366(16)30370-4.
Solmi M, Suresh Sharma M, Osimo EF, et al. Peripheral levels of C-reactive protein, tumor necrosis factor-alpha, interleukin-6, and interleukin-1beta across the mood spectrum in bipolar disorder: a meta-analysis of mean differences and variability. Brain Behav Immun. 2021;97:193–203. doi:10.1016/j.bbi.2021.07.014.
Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009;71:171–86. doi:10.1097/PSY.0b013e3181907c1b.
Osimo EF, Cardinal RN, Jones PB, Khandaker GM. Prevalence and correlates of low-grade systemic inflammation in adult psychiatric inpatients: an electronic health record-based study. Psychoneuroendocrinology. 2018;91:226–34. doi:10.1016/j.psyneuen.2018.02.031.
Zhang X, Li X, Tong J, Li N, Zhang F. C-reactive protein in bipolar disorder and unipolar depression. J Nerv Ment Dis. 2022;210:510–4. doi:10.1097/NMD.0000000000001487.
Wu X, Niu Z, Zhu Y, et al. Peripheral biomarkers to predict the diagnosis of bipolar disorder from major depressive disorder in adolescents. Eur Arch Psychiatry Clin Neurosci. 2022;272:817–26. doi:10.1007/s00406-021-01321-4.
Caldirola D, Dacco S, Cuniberti F, et al. Elevated C-reactive protein levels across diagnoses: the first comparison among inpatients with major depressive disorder, bipolar disorder, or obsessive-compulsive disorder. J Psychosom Res. 2021;150:110604. doi:10.1016/j.jpsychores.2021.110604.
Chang HH, Wang TY, Lee IH, et al. C-reactive protein: a differential biomarker for major depressive disorder and bipolar II disorder. World J Biol Psychiatry. 2017;18:63–70. doi:10.3109/15622975.2016.1155746.
Brown M, Worrell C, Pariante CM. Inflammation and early life stress: an updated review of childhood trauma and inflammatory markers in adulthood. Pharmacol Biochem Behav. 2021;211:173291. doi:10.1016/j.pbb.2021.173291.
Balta S, Demirkol S, Unlu M, et al. Neutrophil to lymphocyte ratio may be predict of mortality in all conditions. Br J Cancer. 2013;109:3125–6. doi:10.1038/bjc.2013.598.
Guo J, Chen S, Chen Y, et al. Combination of CRP and NLR: a better predictor of postoperative survival in patients with gastric cancer. Cancer Manag Res. 2018;10:315–21. doi:10.2147/CMAR.S156071.
Gibson PH, Croal BL, Cuthbertson BH, et al. Preoperative neutrophil-lymphocyte ratio and outcome from coronary artery bypass grafting. Am Heart J. 2007;154:995–1002. doi:10.1016/j.ahj.2007.06.043.
Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6:173–82. doi:10.1038/nri1785.
Dietrich-Muszalska A, Wachowicz B. Platelet haemostatic function in psychiatric disorders: effects of antidepressants and antipsychotic drugs. World J Biol Psychiatry. 2017;18:564–74. doi:10.3109/15622975.2016.1155748.
Beumer W, Gibney SM, Drexhage RC, et al. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol. 2012;92:959–75. doi:10.1189/jlb.0212100.
Muller N, Wagner JK, Krause D, et al. Impaired monocyte activation in schizophrenia. Psychiatry Res. 2012;198:341–6. doi:10.1016/j.psychres.2011.12.049.
Alberts B. Molecular biology of the cell. 5th edn. New York: Garland Science; 2008.
Mazza MG, Lucchi S, Tringali AGM, et al. Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in mood disorders: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84:229–36. doi:10.1016/j.pnpbp.2018.03.012.
Zhou L, Ma X, Wang W. Inflammation and coronary heart disease risk in patients with depression in China Mainland: a cross-sectional study. Neuropsychiatr Dis Treat. 2020;16:81–86. doi:10.2147/NDT.S216389.
Wang J, Zhou D, Dai Z, Li X. Association between systemic immune-inflammation index and diabetic depression. Clin Interv Aging. 2021;16:97–105. doi:10.2147/CIA.S285000.
Bhikram T, Sandor P. Neutrophil-lymphocyte ratios as inflammatory biomarkers in psychiatric patients. Brain Behav Immun. 2022;105:237–46. doi:10.1016/j.bbi.2022.07.006.
Wei Y, Feng J, Ma J, et al. Neutrophil/lymphocyte, platelet/lymphocyte and monocyte/lymphocyte ratios in patients with affective disorders. J Affect Disord. 2022;309:221–8. doi:10.1016/j.jad.2022.04.092.
Bulut NS, Yorguner N, Carkaxhiu Bulut G. The severity of inflammation in major neuropsychiatric disorders: comparison of neutrophil-lymphocyte and platelet-lymphocyte ratios between schizophrenia, bipolar mania, bipolar depression, major depressive disorder, and obsessive compulsive disorder. Nord J Psychiatry. 2021;75:624–32. doi:10.1080/08039488.2021.1919201.
Brinn A, Stone J. Neutrophil-lymphocyte ratio across psychiatric diagnoses: a cross-sectional study using electronic health records. BMJ Open. 2020;10:e036859. doi:10.1136/bmjopen-2020-036859.
Rybakowski JK, Wykretowicz A, Heymann-Szlachcinska A, Wysocki H. Impairment of endothelial function in unipolar and bipolar depression. Biol Psychiatry. 2006;60:889–91. doi:10.1016/j.biopsych.2006.03.025.
Ramesh G, MacLean AG, Philipp MT. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm. 2013;2013:480739. doi:10.1155/2013/480739.
Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. doi:10.3389/fimmu.2014.00491.
Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability. Front Neuroendocrinol. 2012;33:116–25. doi:10.1016/j.yfrne.2011.12.002.
Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther. 2011;130:226–38. doi:10.1016/j.pharmthera.2011.01.014.
Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25:181–213. doi:10.1016/j.bbi.2010.10.015.
Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. 2012;37:137–62. doi:10.1038/npp.2011.205.
Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000;18:217–42. doi:10.1146/annurev.immunol.18.1.217.
Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12:121–7. doi:10.1016/S1074-7613(00)80165-X.
Cyster JG. Chemokines and cell migration in secondary lymphoid organs. Science. 1999;286:2098–102. doi:10.1126/science.286.5447.2098.
Kohler CA, Freitas TH, Maes M, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135:373–87. doi:10.1111/acps.12698.
Spoelma MJ, Serafimovska A, Parker G. Differentiating melancholic and non-melancholic depression via biological markers: a review. World J Biol Psychiatry. 2023;24:761–810. doi:10.1080/15622975.2023.2219725.
Gold PW. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry. 2015;20:32–47. doi:10.1038/mp.2014.163.
Stetler C, Miller GE. Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med. 2011;73:114–26. doi:10.1097/PSY.0b013e31820ad12b.
Baumeister D, Akhtar R, Ciufolini S, et al. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-alpha. Mol Psychiatry. 2016;21:642–9. doi:10.1038/mp.2015.67.
Ortiz-Dominguez A, Hernandez ME, Berlanga C, et al. Immune variations in bipolar disorder: phasic differences. Bipolar Disord. 2007;9:596–602. doi:10.1111/j.1399-5618.2007.00493.x.
Jacoby AS, Munkholm K, Vinberg M, et al. Cytokines, brain-derived neurotrophic factor and C-reactive protein in bipolar I disorder - results from a prospective study. J Affect Disord. 2016;197:167–74. doi:10.1016/j.jad.2016.03.040.
Vega-Nunez A, Gomez-Sanchez-Lafuente C, Mayoral-Cleries F, et al. Clinical value of inflammatory and neurotrophic biomarkers in bipolar disorder: a systematic review and meta-analysis. Biomedicines. 2022;10:1368. doi:10.3390/biomedicines10061368.
Mora E, Portella MJ, Pinol-Ripoll G, et al. High BDNF serum levels are associated to good cognitive functioning in bipolar disorder. Eur Psychiatry. 2019;60:97–107. doi:10.1016/j.eurpsy.2019.02.006.
Barbosa IG, Rocha NP, Bauer ME, et al. Chemokines in bipolar disorder: trait or state? Eur Arch Psychiatry Clin Neurosci. 2013;263:159–65. doi:10.1007/s00406-012-0327-6.
Barbosa IG, Machado-Vieira R, Soares JC, Teixeira AL. The immunology of bipolar disorder. Neuroimmunomodulation. 2014;21:117–22. doi:10.1159/000356539.
Siwek M, Sowa-Kucma M, Styczen K, et al. Associations of serum cytokine receptor levels with melancholia, staging of illness, depressive and manic phases, and severity of depression in bipolar disorder. Mol Neurobiol. 2017;54:5883–93. doi:10.1007/s12035-016-0124-8.
Anderson G, Maes M. Bipolar disorder: role of immune-inflammatory cytokines, oxidative and nitrosative stress and tryptophan catabolites. Curr Psychiatry Rep. 2015;17:8. doi:10.1007/s11920-014-0541-1.
Rosenblat JD, McIntyre RS. Bipolar disorder and inflammation. Psychiatr Clin North Am. 2016;39:125–37. doi:10.1016/j.psc.2015.09.006.
Rowland T, Perry BI, Upthegrove R, et al. Neurotrophins, cytokines, oxidative stress mediators and mood state in bipolar disorder: systematic review and meta-analyses. Br J Psychiatry. 2018;213:514–25. doi:10.1192/bjp.2018.144.
Munkholm K, Brauner JV, Kessing LV, Vinberg M. Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res. 2013;47:1119–33. doi:10.1016/j.jpsychires.2013.05.018.
Malhi GS, Irwin L, Hamilton A, et al. Modelling mood disorders: an ACE solution? Bipolar Disord. 2018;20:4–16. doi:10.1111/bdi.12700.
Brietzke E, Stertz L, Fernandes BS, et al. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord. 2009;116:214–7. doi:10.1016/j.jad.2008.12.001.
Eyre HA, Air T, Pradhan A, et al. A meta-analysis of chemokines in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;68:1–8. doi:10.1016/j.pnpbp.2016.02.006.
Leighton SP, Nerurkar L, Krishnadas R, et al. Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol Psychiatry. 2018;23:48–58. doi:10.1038/mp.2017.205.
Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44:75–83. doi:10.1093/schbul/sbx035.
Birur B, Amrock EM, Shelton RC, Li L. Sex differences in the peripheral immune system in patients with depression. Front Psychiatry. 2017;8:108. doi:10.3389/fpsyt.2017.00108.
Brietzke E, Kauer-Sant’Anna M, Teixeira AL, Kapczinski F. Abnormalities in serum chemokine levels in euthymic patients with bipolar disorder. Brain Behav Immun. 2009;23:1079–82. doi:10.1016/j.bbi.2009.04.008.
Misiak B, Bartoli F, Carra G, et al. Chemokine alterations in bipolar disorder: a systematic review and meta-analysis. Brain Behav Immun. 2020;88:870–7. doi:10.1016/j.bbi.2020.04.013.
Poletti S, Vai B, Mazza MG, et al. A peripheral inflammatory signature discriminates bipolar from unipolar depression: a machine learning approach. Prog Neuropsychopharmacol Biol Psychiatry. 2020;105:110136. doi:10.1016/j.pnpbp.2020.110136.
Isgren A, Jakobsson J, Palsson E, et al. Increased cerebrospinal fluid interleukin-8 in bipolar disorder patients associated with lithium and antipsychotic treatment. Brain Behav Immun. 2015;43:198–204. doi:10.1016/j.bbi.2014.10.001.
Martinuzzi E, Barbosa S, Courtet P, et al. Blood cytokines differentiate bipolar disorder and major depressive disorder during a major depressive episode: initial discovery and independent sample replication. Brain Behav Immun Health. 2021;13:100232. doi:10.1016/j.bbih.2021.100232.
Brunoni AR, Supasitthumrong T, Teixeira AL, et al. Differences in the immune-inflammatory profiles of unipolar and bipolar depression. J Affect Disord. 2020;262:8–15. doi:10.1016/j.jad.2019.10.037.
Wollenhaupt-Aguiar B, Librenza-Garcia D, Bristot G, et al. Differential biomarker signatures in unipolar and bipolar depression: A machine learning approach. Aust N Z J Psychiatry. 2019;54:393–401. doi:10.1177/0004867419888027.
Gibney S, Drexhage H. EPA-1405 – role of monocyte mRNA in mood disorders. Eur Psychiat. 2014;29:1. doi:10.1016/S0924-9338(14)78610-9.
Grosse L, Carvalho LA, Wijkhuijs AJ, Bellingrath S, et al. Clinical characteristics of inflammation-associated depression: monocyte gene expression is age-related in major depressive disorder. Brain Behav Immun. 2015;44:48–56. doi:10.1016/j.bbi.2014.08.004.
Drexhage RC, Hoogenboezem TH, Versnel MA, et al. The activation of monocyte and T cell networks in patients with bipolar disorder. Brain Behav Immun. 2011;25:1206–13. doi:10.1016/j.bbi.2011.03.013.
Becking K, Haarman BC, van der Lek RF, Grosse L, et al. Inflammatory monocyte gene expression: trait or state marker in bipolar disorder? Int J Bipolar Disord. 2015;3:20. doi:10.1186/s40345-015-0037-x.
Vogels RJ, Koenders MA, van Rossum EF, et al. T cell deficits and overexpression of hepatocyte growth factor in anti-inflammatory circulating monocytes of middle-aged patients with bipolar disorder characterized by a high prevalence of the metabolic syndrome. Front Psychiatry. 2017;8:34. doi:10.3389/fpsyt.2017.00034.
Eggerstorfer B, Kim JH, Cumming P, et al. Meta-analysis of molecular imaging of translocator protein in major depression. Front Mol Neurosci. 2022;15:981442. doi:10.3389/fnmol.2022.981442.
Weigelt K, Carvalho LA, Drexhage RC, et al. TREM-1 and DAP12 expression in monocytes of patients with severe psychiatric disorders. EGR3, ATF3 and PU.1 as important transcription factors. Brain Behav Immun. 2011;25:1162–9. doi:10.1016/j.bbi.2011.03.006.
Bouchon A, Dietrich J, Colonna M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol. 2000;164:4991–5. doi:10.4049/jimmunol.164.10.4991.
Li G, Hao W, Hu W. Transcription factor PU.1 and immune cell differentiation (review). Int J Mol Med. 2020;46:1943–50. doi:10.3892/ijmm.2020.4763.
Ziv Y, Schwartz M. Immune-based regulation of adult neurogenesis: implications for learning and memory. Brain Behav Immun. 2008;22:167–76. doi:10.1016/j.bbi.2007.08.006.
Schwartz M, Kipnis J. A conceptual revolution in the relationships between the brain and immunity. Brain Behav Immun. 2011;25:817–9. doi:10.1016/j.bbi.2010.12.015.
Kipnis J, Cohen H, Cardon M, et al. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci USA. 2004;101:8180–5. doi:10.1073/pnas.0402268101.
Croese T, Castellani G, Schwartz M. Immune cell compartmentalization for brain surveillance and protection. Nat Immunol. 2021;22:1083–92. doi:10.1038/s41590-021-00994-2.
Benedetti F, Poletti S, Hoogenboezem TA, et al. Stem cell factor (SCF) is a putative biomarker of antidepressant response. J Neuroimmune Pharmacol. 2016;11:248–58. doi:10.1007/s11481-016-9672-y.
Poletti S, de Wit H, Mazza E, et al. Th17 cells correlate positively to the structural and functional integrity of the brain in bipolar depression and healthy controls. Brain Behav Immun. 2017;61:317–25. doi:10.1016/j.bbi.2016.12.020.
Furlan R, Melloni E, Finardi A, et al. Natural killer cells protect white matter integrity in bipolar disorder. Brain Behav Immun. 2019;81:410–21. doi:10.1016/j.bbi.2019.06.037.
Magioncalda P, Martino M, Tardito S, et al. White matter microstructure alterations correlate with terminally differentiated CD8+ effector T cell depletion in the peripheral blood in mania: combined DTI and immunological investigation in the different phases of bipolar disorder. Brain Behav Immun. 2018;73:192–204. doi:10.1016/j.bbi.2018.04.017.
Schlaaff K, Dobrowolny H, Frodl T, et al. Increased densities of T and B lymphocytes indicate neuroinflammation in subgroups of schizophrenia and mood disorder patients. Brain Behav Immun. 2020;88:497–506. doi:10.1016/j.bbi.2020.04.021.
Rizzo LB, Swardfager W, Maurya PK, et al. An immunological age index in bipolar disorder: a confirmatory factor analysis of putative immunosenescence markers and associations with clinical characteristics. Int J Methods Psychiatr Res. 2018;27:e1614. doi:10.1002/mpr.1614.
Grosse L, Carvalho LA, Birkenhager TK, et al. Circulating cytotoxic T cells and natural killer cells as potential predictors for antidepressant response in melancholic depression. Restoration of T regulatory cell populations after antidepressant therapy. Psychopharmacology. 2016;233:1679–88. doi:10.1007/s00213-015-3943-9.
Li Y, Xiao B, Qiu W, et al. Altered expression of CD4(+)CD25(+) regulatory T cells and its 5-HT(1a) receptor in patients with major depression disorder. J Affect Disord. 2010;124:68–75. doi:10.1016/j.jad.2009.10.018.
Foley EM, Parkinson JT, Mitchell RE, et al. Peripheral blood cellular immunophenotype in depression: a systematic review and meta-analysis. Mol Psychiatry. 2023;28:1004–19. doi:10.1038/s41380-022-01919-7.
Toben C, Baune BT. An act of balance between adaptive and maladaptive immunity in depression: a role for T lymphocytes. J Neuroimmune Pharmacol. 2015;10:595–609. doi:10.1007/s11481-015-9620-2.
Schiweck C, Valles-Colomer M, Arolt V, et al. Depression and suicidality: a link to premature T helper cell aging and increased Th17 cells. Brain Behav Immun. 2020;87:603–9. doi:10.1016/j.bbi.2020.02.005.
Grosse L, Hoogenboezem T, Ambree O, et al. Deficiencies of the T and natural killer cell system in major depressive disorder: T regulatory cell defects are associated with inflammatory monocyte activation. Brain Behav Immun. 2016;54:38–44. doi:10.1016/j.bbi.2015.12.003.
Snijders G, Schiweck C, Mesman E, et al. A dynamic course of T cell defects in individuals at risk for mood disorders. Brain Behav Immun. 2016;58:11–7. doi:10.1016/j.bbi.2016.05.007.
Chen Y, Jiang T, Chen P, et al. Emerging tendency towards autoimmune process in major depressive patients: a novel insight from Th17 cells. Psychiatry Res. 2011;188:224–30. doi:10.1016/j.psychres.2010.10.029.
Suzuki H, Savitz J, Kent Teague T, et al. Altered populations of natural killer cells, cytotoxic T lymphocytes, and regulatory T cells in major depressive disorder: association with sleep disturbance. Brain Behav Immun. 2017;66:193–200. doi:10.1016/j.bbi.2017.06.011.
do Prado CH, Rizzo LB, Wieck A, et al. Reduced regulatory T cells are associated with higher levels of Th1/TH17 cytokines and activated MAPK in type 1 bipolar disorder. Psychoneuroendocrinology. 2013;38:667–76. doi:10.1016/j.psyneuen.2012.08.005.
Chen Z, Huang Y, Wang B, et al. T cells: an emerging cast of roles in bipolar disorder. Transl Psychiatry. 2023;13:153. doi:10.1038/s41398-023-02445-y.
Breunis MN, Kupka RW, Nolen WA, et al. High numbers of circulating activated T cells and raised levels of serum IL-2 receptor in bipolar disorder. Biol Psychiatry. 2003;53:157–65. doi:10.1016/S0006-3223(02)01452-X.
Becking K, Haarman BCM, Grosse L, et al. The circulating levels of CD4+ t helper cells are higher in bipolar disorder as compared to major depressive disorder. J Neuroimmunol. 2018;319:28–36. doi:10.1016/j.jneuroim.2018.03.004.
Keshri N, Nandeesha H, Kattimani S. Elevated interleukin-17 and reduced testosterone in bipolar disorder. Relation with suicidal behaviour. Asian J Psychiatr. 2018;36:66–68. doi:10.1016/j.ajp.2018.06.011.
Barbosa IG, Rocha NP, Assis F, et al. Monocyte and lymphocyte activation in bipolar disorder: a new piece in the puzzle of immune dysfunction in mood disorders. Int J Neuropsychopharmacol. 2014;18:pyu021. doi:10.1093/ijnp/pyu021.
Wieck A, Grassi-Oliveira R, do Prado CH, et al. Differential neuroendocrine and immune responses to acute psychosocial stress in women with type 1 bipolar disorder. Brain Behav Immun. 2013;34:47–55. doi:10.1016/j.bbi.2013.07.005.
Wu W, Zheng YL, Tian LP, et al. Circulating T lymphocyte subsets, cytokines, and immune checkpoint inhibitors in patients with bipolar II or major depression: a preliminary study. Sci Rep. 2017;7:40530. doi:10.1038/srep40530.
Li S, Lv D, Qian C, et al. Circulating T-cell subsets discrepancy between bipolar disorder and major depressive disorder during mood episodes: a naturalistic, retrospective study of 1015 cases. CNS Neurosci Ther. 2024;30:e14361. doi:10.1111/cns.14361.
Swallow VM, Nightingale R, Williams J, et al. Multidisciplinary teams, and parents, negotiating common ground in shared-care of children with long-term conditions: a mixed methods study. BMC Health Serv Res. 2013;13:264. doi:10.1186/1472-6963-13-264.
Bauer ME, Wieck A, Petersen LE, Baptista TS. Neuroendocrine and viral correlates of premature immunosenescence. Ann N Y Acad Sci. 2015;1351:11–21. doi:10.1111/nyas.12786.
Benedetti F, Poletti S, Hoogenboezem TA, et al. Inflammatory cytokines influence measures of white matter integrity in bipolar disorder. J Affect Disord. 2016;202:1–9. doi:10.1016/j.jad.2016.05.047.
Comai S, Melloni E, Lorenzi C, et al. Selective association of cytokine levels and kynurenine/tryptophan ratio with alterations in white matter microstructure in bipolar but not in unipolar depression. Eur Neuropsychopharmacol. 2022;55:96–109. doi:10.1016/j.euroneuro.2021.11.003.
Poletti S, Myint AM, Schuetze G, et al. Kynurenine pathway and white matter microstructure in bipolar disorder. Eur Arch Psychiatry Clin Neurosci. 2018;268:157–168. doi:10.1007/s00406-016-0731-4.
Poletti S, Melloni E, Aggio V, et al. Grey and white matter structure associates with the activation of the tryptophan to kynurenine pathway in bipolar disorder. J Affect Disord. 2019;259:404–12. doi:10.1016/j.jad.2019.08.034.
Bollettini I, Poletti S, Locatelli C, et al. Disruption of white matter integrity marks poor antidepressant response in bipolar disorder. J Affect Disord. 2015;174:233–40. doi:10.1016/j.jad.2014.11.010.
Melloni EM, Poletti S, Dallaspezia S, et al. Changes of white matter microstructure after successful treatment of bipolar depression. J Affect Disord. 2020;274:1049–56. doi:10.1016/j.jad.2020.05.146.
Poletti S, Bollettini I, Mazza E, et al. Cognitive performances associate with measures of white matter integrity in bipolar disorder. J Affect Disord. 2015;174:342–52. doi:10.1016/j.jad.2014.12.030.
Poletti S, Aggio V, Brioschi S, et al. Impact of early and recent stress on white matter microstructure in major depressive disorder. J Affect Disord. 2018;225:289–97. doi:10.1016/j.jad.2017.08.017.
Benedetti F, Bollettini I, Radaelli D, et al. Adverse childhood experiences influence white matter microstructure in patients with bipolar disorder. Psychol Med. 2014;44:3069–82. doi:10.1017/S0033291714000506.
Benedetti F, Bollettini I. Recent findings on the role of white matter pathology in bipolar disorder. Harv Rev Psychiatry. 2014;22:338–41. doi:10.1097/HRP.0000000000000007.
Vai B, Parenti L, Bollettini I, et al. Predicting differential diagnosis between bipolar and unipolar depression with multiple kernel learning on multimodal structural neuroimaging. Eur Neuropsychopharmacol. 2020;34:28–38. doi:10.1016/j.euroneuro.2020.03.008.
Arnett HA, Mason J, Marino M, et al. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci. 2001;4:1116–22. doi:10.1038/nn738.
McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8:1390–7. doi:10.1038/ni1539.
Imeri L, Opp MR. How (and why) the immune system makes us sleep. Nat Rev Neurosci. 2009;10:199–210. doi:10.1038/nrn2576.
Wisor JP, Schmidt MA, Clegern WC. Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep. 2011;34:261–72. doi:10.1093/sleep/34.3.261.
Muzio L, Brambilla V, Calcaterra L, et al. Increased neuroplasticity and hippocampal microglia activation in a mice model of rapid antidepressant treatment. Behav Brain Res. 2016;311:392–402. doi:10.1016/j.bbr.2016.05.063.
Alesci S, Martinez PE, Kelkar S, et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab. 2005;90:2522–30. doi:10.1210/jc.2004-1667.
Bonkat G, Wirz D, Rieken M, et al. [Areas of application of isothermal microcalorimetry in urology: an overview]. Urol A. 2013;52:1092–6. doi:10.1007/s00120-013-3169-6.
Melloni EM, Bravi B, Poletti S, et al. Antidepressant chronotherapeutics normalizes prefrontal 1H-MRS glutamate in bipolar depression. Prog Neuropsychopharmacol Biol Psychiatry. 2022;119:110606. doi:10.1016/j.pnpbp.2022.110606.
McClung CA. How might circadian rhythms control mood? Let me count the ways. Biol Psychiatry. 2013;74:242–9. doi:10.1016/j.biopsych.2013.02.019.
Wirz-Justice A, Benedetti F. Perspectives in affective disorders: Clocks and sleep. Eur J Neurosci. 2020;51:346–365. doi:10.1111/ejn.14362.
Walker WH, 2nd, Walton JC, DeVries AC, Nelson RJ. Circadian rhythm disruption and mental health. Transl Psychiatry. 2020;10:28. doi:10.1038/s41398-020-0694-0.
Branchi I, Poggini S, Capuron L, et al. Brain-immune crosstalk in the treatment of major depressive disorder. Eur Neuropsychopharmacol. 2021;45:89–107. doi:10.1016/j.euroneuro.2020.11.016.
Arteaga-Henriquez G, Simon MS, Burger B, et al. Low-grade inflammation as a predictor of antidepressant and anti-inflammatory therapy response in MDD patients: a systematic review of the literature in combination with an analysis of experimental data collected in the EU-MOODINFLAME Consortium. Front Psychiatry. 2019;10:458. doi:10.3389/fpsyt.2019.00458.
Benedetti F, Poletti S, Vai B, et al. Higher baseline interleukin-1β and TNF-α hamper antidepressant response in major depressive disorder. Eur Neuropsychopharmacol. 2021;42:35–44. doi:10.1016/j.euroneuro.2020.11.009.
Benedetti F, Zanardi R, Mazza MG. Antidepressant psychopharmacology: is inflammation a future target? Int Clin Psychopharmacol. 2022;37:79–81. doi:10.1097/YIC.0000000000000403.
Poggini S, Lopez MB, Albanese NC, et al. Minocycline treatment improves cognitive and functional plasticity in a preclinical mouse model of major depressive disorder. Behav Brain Res. 2023;441:114295. doi:10.1016/j.bbr.2023.114295.
Cheng D, Qin ZS, Zheng Y, et al. Minocycline, a classic antibiotic, exerts psychotropic effects by normalizing microglial neuroinflammation-evoked tryptophan-kynurenine pathway dysregulation in chronically stressed male mice. Brain Behav Immun. 2023;107:305–18. doi:10.1016/j.bbi.2022.10.022.
Nettis MA, Lombardo G, Hastings C, et al. Augmentation therapy with minocycline in treatment-resistant depression patients with low-grade peripheral inflammation: results from a double-blind randomised clinical trial. Neuropsychopharmacology. 2021;46:939–48. doi:10.1038/s41386-020-00948-6.
Poletti S, Zanardi R, Mandelli A, et al. Low-dose interleukin 2 antidepressant potentiation in unipolar and bipolar depression: safety, efficacy, and immunological biomarkers. Brain Behav Immun. 2024;118:52–68. doi:10.1016/j.bbi.2024.02.019.
Beishuizen A, Thijs LG. Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J Endotoxin Res. 2003;9:3–24.
Silverman MN, Miller AH, Biron CA, Pearce BD. Characterization of an interleukin-6- and adrenocorticotropin-dependent, immune-to-adrenal pathway during viral infection. Endocrinology. 2004;145:3580–9. doi:10.1210/en.2003-1421.
Turrin NP, Rivest S. Unraveling the molecular details involved in the intimate link between the immune and neuroendocrine systems. Exp Biol Med. 2004;229:996–1006. doi:10.1177/153537020422901003.
Pariante CM. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur Neuropsychopharmacol. 2017;27:554–9. doi:10.1016/j.euroneuro.2017.04.001.
Pace TW, Miller AH. Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann N Y Acad Sci. 2009;1179:86–105. doi:10.1111/j.1749-6632.2009.04984.x.
Wake H, Moorhouse AJ, Jinno S, et al. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci. 2009;29:3974–80. doi:10.1523/JNEUROSCI.4363-08.2009.
Eyo UB, Wu LJ. Bidirectional microglia-neuron communication in the healthy brain. Neural Plast. 2013;2013:456857. doi:10.1155/2013/456857.
Harry GJ, Kraft AD. Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology. 2012;33:191–206. doi:10.1016/j.neuro.2012.01.012.
Lindenau J, Noack H, Asayama K, Wolf G. Enhanced cellular glutathione peroxidase immunoreactivity in activated astrocytes and in microglia during excitotoxin induced neurodegeneration. Glia. 1998;24:252–6. doi:10.1002/(SICI)1098-1136(199810)24:2<252::AID-GLIA10>3.0.CO;2-Z.
Paolicelli RC, Sierra A, Stevens B, et al. Microglia states and nomenclature: a field at its crossroads. Neuron. 2022;110:3458–83. doi:10.1016/j.neuron.2022.10.020.
Machado-Vieira R, Soeiro-De-Souza MG, Richards EM, et al. Multiple levels of impaired neural plasticity and cellular resilience in bipolar disorder: developing treatments using an integrated translational approach. World J Biol Psychiatry. 2014;15:84–95. doi:10.3109/15622975.2013.830775.
Paradise MB, Naismith SL, Norrie LM, et al. The role of glia in late-life depression. Int Psychogeriatr. 2012;24:1878–90. doi:10.1017/S1041610212000828.
Park KM, Bowers WJ. Tumor necrosis factor-alpha mediated signaling in neuronal homeostasis and dysfunction. Cell Signal. 2010;22:977–83. doi:10.1016/j.cellsig.2010.01.010.
Scott G, Zetterberg H, Jolly A, et al. Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration. Brain. 2018;141:459–71. doi:10.1093/brain/awx339.
Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019;81:24–40. doi:10.1016/j.bbi.2019.06.015.
Stertz L, Magalhaes PV, Kapczinski F. Is bipolar disorder an inflammatory condition? The relevance of microglial activation. Curr Opin Psychiatry. 2013;26:19–26. doi:10.1097/YCO.0b013e32835aa4b4.
Haarman BCB, Riemersma-Van der Lek RF, de Groot JC, et al. Neuroinflammation in bipolar disorder–A [11C]-(R)-PK11195 positron emission tomography study. Brain Behav Immun. 2014;40:219–25. doi:10.1016/j.bbi.2014.03.016.
Li H, Sagar AP, Kéri S. Microglial markers in the frontal cortex are related to cognitive dysfunctions in major depressive disorder. J Affect Disord. 2018;241:305–10. doi:10.1016/j.jad.2018.08.021.
Setiawan E, Wilson AA, Mizrahi R, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry. 2015;72:268–75. doi:10.1001/jamapsychiatry.2014.2427.
Holmes SE, Hinz R, Conen S, et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: a positron emission tomography study. Biol Psychiatry. 2018;83:61–9. doi:10.1016/j.biopsych.2017.08.005.
Steiner J, Bielau H, Brisch R, et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008;42:151–7. doi:10.1016/j.jpsychires.2006.10.013.
Bourgognon JM, Cavanagh J. The role of cytokines in modulating learning and memory and brain plasticity. Brain Neurosci Adv. 2020;4:2398212820979802. doi:10.1177/2398212820979802.
Zhang JC, Yao W, Hashimoto K. Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol. 2016;14:721–31. doi:10.2174/1570159X14666160119094646.
Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199–229. doi:10.1016/j.neuroscience.2013.04.060.
Schäfer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends in biochemical sciences. 1996;21:134–40. doi:10.1016/S0968-0004(96)80167-8.
Schroeter ML, Sacher J, Steiner J, et al. Serum S100B represents a new biomarker for mood disorders. Curr Drug Targets. 2013;14:1237–48. doi:10.2174/13894501113149990014.
Capuron L, Neurauter G, Musselman DL, et al. Interferon-alpha-induced changes in tryptophan metabolism. relationship to depression and paroxetine treatment. Biol Psychiatry. 2003;54:906–14. doi:10.1016/S0006-3223(03)00173-2.
Capuron L, Ravaud A, Gualde N, et al. Association between immune activation and early depressive symptoms in cancer patients treated with interleukin-2-based therapy. Psychoneuroendocrinology. 2001;26:797–808. doi:10.1016/S0306-4530(01)00030-0.
Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56. doi:10.1038/nrn2297.
Davis I, Liu A. What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? Expert Rev Neurother. 2015;15:719–21. doi:10.1586/14737175.2015.1049999.
Wang J, Dunn AJ. Mouse interleukin-6 stimulates the HPA axis and increases brain tryptophan and serotonin metabolism. Neurochem Int. 1998;33:143–54. doi:10.1016/S0197-0186(98)00016-3.
Zhang J, Terreni L, De Simoni MG, Dunn AJ. Peripheral interleukin-6 administration increases extracellular concentrations of serotonin and the evoked release of serotonin in the rat striatum. Neurochem Int. 2001;38:303–8. doi:10.1016/S0197-0186(00)00099-1.
Arango V, Underwood MD, Mann JJ. Serotonin brain circuits involved in major depression and suicide. Prog Brain Res. 2002;136:443–53. doi:10.1016/S0079-6123(02)36037-0.
Barton DA, Esler MD, Dawood T, et al. Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy. Arch Gen Psychiatry. 2008;65:38–46. doi:10.1001/archgenpsychiatry.2007.11.
Pandey GN, Dwivedi Y, Rizavi HS, Ren X, et al. Higher expression of serotonin 5-HT2A receptors in the postmortem brains of teenage suicide victims. Am J Psychiatry. 2002;159:419–29. doi:10.1176/appi.ajp.159.3.419.
Erhardt S, Schwieler L, Imbeault S, Engberg G. The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology. 2017;112:297–306. doi:10.1016/j.neuropharm.2016.05.020.
Myint AM, Kim YK, Verkerk R, et al. Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord. 2007;98:143–51. doi:10.1016/j.jad.2006.07.013.
Benedetti F, Palladini M, Paolini M, et al. Brain correlates of depression, post-traumatic distress, and inflammatory biomarkers in COVID-19 survivors: a multimodal magnetic resonance imaging study. Brain Behav Immun Health. 2021;18:100387. doi:10.1016/j.bbih.2021.100387.
Опубликован
Как цитировать
Лицензия
Copyright (c) 2024 Sara Poletti, Mario Gennaro Mazza, Francesco Benedetti
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.