Химический состав и биологическая активность вторичных метаболитов Cuscuta campestris
Авторы
- А. С. Чиряпкин Пятигорский медико-фармацевтический институт — филиал ВолгГМУ https://orcid.org/0000-0001-8207-2953
- Д. С. Золотых Пятигорский медико-фармацевтический институт — филиал ВолгГМУ
- И. П. Кодониди Пятигорский медико-фармацевтический институт — филиал ВолгГМУ
- А. А. Глушко Пятигорский медико-фармацевтический институт — филиал ВолгГМУ
- Л. И. Щербакова Пятигорский медико-фармацевтический институт — филиал ВолгГМУ
Ключевые слова:
повилика полевая, Cuscuta campestris, вторичные метаболиты, химический состав, биологическая активностьАннотация
В обзоре обобщены данные литературы, касающиеся химического состава и спектра биологической активности извлечений Cuscuta campestris Yunck (повилика полевая), которая относится к семейству вьюнковые (Convolvulaceae). C. campestris представляет собой надземного паразита. Его стебли обвиваются вокруг растений-хозяев и прикрепляются к ним гаусториями, образующимися в местах соприкосновения с питающим растением и глубоко внедряющимися в его ткань. На территории Российской Федерации насчитывается более 30 видов повилики. Извлечения C. campestris применяются в традиционной медицине Южной Азии, но в качестве объекта получения биологически активных соединений в России C. campestris не используется. Стоит отметить, что в последние годы интенсифицировались исследования фармакологических свойств C. campestris, что позволило установить наличие у растения широкого спектра биологической активности. В частности, извлечения полевики оказывают противовоспалительное, транквилизирующее, противоопухолевое, жаропонижающее, антиоксидантное, церебропротекторное, противогрибковое, противовирусное, анальгезирующее и гепатопротекторное действие. В случае выделения мажорных компонентов извлечений C. campestris представлялось возможным предположить важность тех или иных веществ в реализации ими фармакологической активности, что и обсуждается в данном обзоре. Среди вторичных метаболитов выявлены сахара и сахарные кислоты, половые феромоны, танины, каротиноиды, аминокислоты, жирные кислоты и их эфиры, полифенолы (в том числе флавоноиды), кумарины, тритерпеноиды, витамины, фураны, пираны и лактоны. В связи с тем, что рассматриваемое растение широко представлено на территории Российской Федерации и является доступным, C. campestris можно считать перспективным объектом исследования для создания на его основе новых эффективных лекарственных препаратов.
Биографии авторов
А. С. Чиряпкин, Пятигорский медико-фармацевтический институт — филиал ВолгГМУ
преподаватель кафедры фармацевтической химии
Д. С. Золотых, Пятигорский медико-фармацевтический институт — филиал ВолгГМУ
кандидат фармацевтических наук, доцент кафедры токсикологической и аналитической химии
И. П. Кодониди, Пятигорский медико-фармацевтический институт — филиал ВолгГМУ
доктор фармацевтических наук, заведующий кафедрой фармацевтической химии
А. А. Глушко, Пятигорский медико-фармацевтический институт — филиал ВолгГМУ
кандидат фармацевтических наук, доцент кафедры неорганической, физической и коллоидной химии
Л. И. Щербакова, Пятигорский медико-фармацевтический институт — филиал ВолгГМУ
кандидат фармацевтических наук, заведующий кафедрой неорганической, физической и коллоидной химии
Библиографические ссылки
Masanga J, Mwangi BN, Kibet W, et al. Physiological and ecological warnings that dodders pose an exigent threat to farmlands in Eastern Africa. Plant Physiology. 2021;185(4):1457–1467. DOI: https://doi.org/10.1093/plphys/kiab034.
Al-Gburi BK. Effect of different control applications on Cuscuta campestris, and biochemical content of eggplant. Journal of the Saudi Society of Agricultural Sciences. 2021;20(4):209–216. DOI: https://doi.org/10.1016/j.jssas.2021.01.007.
Roozkhosh M, Azami-Sardooei Z, Fekrat F, et al. Tolerance to dodder (Cuscuta campestris L.) in citrus species of south of Kerman province–Iran. Journal of the Saudi Society of Agricultural Sciences. 2022;21(5):331–338. DOI: https://doi.org/10.1016/j.jssas.2021.10.002.
Ghous K, Sajedi S, Mirzaee MR, et al. First report of parasite dodder (Cuscuta campestris) on jujube trees (Ziziphus jujuba) from Iran. Archives Of Phytopathology And Plant Protection. 2013;46:16:2023–2024. DOI: https://doi.org/10.1080/03235408.2013.782646.
Yu H, Yu FH, Miao SL, et al. Holoparasitic Cuscuta campestris suppresses invasive Mikania micrantha and contributes to native community recovery. Biological Conservation. 2008;141(10):2653–2661. DOI: https://doi.org/10.1016/j.biocon.2008.08.002.
Haidar MA, Iskandarani N, Sidahmed M, et al. Response of field dodder (Cuscuta campestris) seeds to soil solarization and chicken manure. Crop Protection. 1999;18(4):253–258. DOI: https://doi.org/10.1016/S0261-2194(99)00023-X.
Mishra JS, Moorthy BTS, Bhan M, et al. Relative tolerance of rainy season crops to field dodder (Cuscuta campestris) and its management in niger (Guizotia abyssinica). Crop protection. 2007;26(4):625–629. DOI: https://doi.org/10.1016/j.cropro.2006.05.016.
Ahmed AM, Eisa SS, El-Shamey I, et al. A study on the flora of El-Qantara Sharq in North Sinai, Egypt. Annals of Agricultural Sciences. 2015;60(1):169–182. DOI: https://doi.org/10.1016/j.aoas.2015.05.001.
Chrtek J, Osbornová J. Notes on the synanthropic plants of Egypt 3. Grammica campestris and other species of familyCuscutaceae. Folia geobot. Phytotax. 1991;26:287–314. DOI: https://doi.org/10.1007/BF02912750.
Baráth K. The genus Cuscuta (Convolvulaceae) in the Andaman Islands with a new record. Acta Botanica Hungarica. 2009;51(3–4):261–272. DOI: https://doi.org/10.1556/abot.51.2009.3-4.3.
Baráth K. Cuscuta subgenus Grammica (Convolvulaceae) on the Palni Hills with a new record. Acta Botanica Hungarica. 2010;52(3–4):227–238. DOI: https://doi.org/10.1556/abot.52.2010.3-4.2.
Bonanomi G, Salvatori N, Zotti M, et al. Parasitic plant causes an ephemeral “rainbow” pattern in a reservoir bank. Journal of Vegetation Science. 2021;32(1): e12931. DOI: https://doi.org/10.1111/jvs.12931.
Chen JingYing CJ, Chen JingYao CJ, Xu XiuDan XX. Advances in research of longan witches’ broom disease. Acta Horticulturae. 2001;558:413–416.
El Mokni R, Elaissi A, El Aouni MH. Cuscuta campestris (Cuscutaceae) une holoparasite nouvelle et envahissante pour la flore de Tunisie. Flora Mediterranea. 2016;26:179–189. DOI: https://doi.org/10.7320/FlMedit26.179.
Yazlık A, Ambarlı D. Do non-native and dominant native species carry a similar risk of invasiveness? A case study for plants in Turkey. NeoBiota. 2022;76:53–72. DOI: https://doi.org/10.3897/neobiota.76.85973.
Üstüner T. The effect of field dodder (Cuscuta campestris Yunck.) on the leaf and tuber yield of sugar beet (Beta vulgaris L.). Turkish journal of Agriculture and Forestry. 2018;42(5):348–353. DOI: https://doi.org/10.3906/tar-1711-108.
Seregin AP. Expansions of plant species to the flora of Vladimir oblast (Russia) in the last decade. Second report. Russ J Biol Invasions. 2015;6:202–221. DOI: https://doi.org/10.1134/S2075111715030066.
Amini M, Deljou A, Nabiabad HS. Improvement of in vitro embryo maturation, plantlet regeneration and transformation efficiency from alfalfa (Medicago sativa L.) somatic embryos using Cuscuta campestris extract. Physiology and molecular biology of plants. 2016;22:321–330. DOI: https://doi.org/10.1007/s12298-016-0374-y.
Löffler C, Czygan FC, Proksch P. Phenolic constituents as taxonomic markers in the genus Cuscuta (Cuscutaceae). Biochemical systematics and ecology. 1997;25(4):297–303. DOI: https://doi.org/10.1016/S0305-1978(97)00015-X.
Kumar K, Amir R. The Effect of a Host on the Primary Metabolic Profiling of Cuscuta Campestris’ Main Organs, Haustoria, Stem and Flower. Plants. 2021;10:2098. DOI: https://doi.org/10.3390/plants10102098.
Behbahani M. Evaluation of In Vitro Anticancer Activity of Ocimum Basilicum, Alhagi Maurorum, Calendula Officinalis and Their Parasite Cuscuta Campestris. PLoS ONE. 2014;9(12): e116049. DOI: https://doi.org/10.1371/journal.pone.0116049.
Selvi EK, Turumtay H, Demir A, et al. Phytochemical profiling and evaluation of the hepatoprotective effect of Cuscuta campestris by high-performance liquid chromatography with diode array detection. Analytical Letters. 2018;51(10):1464–1478. DOI: https://doi.org/10.1080/00032719.2017.1382502.
Agha AM, Sattar EA, Galal A. Pharmacological study of Cuscuta campestris Yuncker. Phytotherapy research. 1996;10(2):117–120. DOI: https://doi.org/10.1002/(SICI)1099-1573(199603)10:2<117:: AID-PTR782>3.0.CO;2-X.
Saric-Krsmanovic MM, Bozic DM, Radivojevic LM, et al. Effect of Cuscuta campestris parasitism on the physiological and anatomical changes in untreated and herbicide-treated sugar beet. Journal of Environmental Science and Health, Part B. 2017;52(11):812–816. DOI: https://doi.org/10.1080/03601234.2017.1356167.
Moreno-Robles A, Cala Peralta A, Zorrilla JG.et al. Identification of Structural Features of Hydrocinnamic Acid Related to Its Allelopathic Activity against the Parasitic Weed Cuscuta campestris. Plants. 2022;11:2846. DOI: https://doi.org/10.3390/plants11212846.
Andolfi A, Zermane N, Cimmino A, et al. Inuloxins A–D, phytotoxic bi-and tri-cyclic sesquiterpene lactones produced by Inula viscosa: Potential for broomrapes and field dodder management. Phytochemistry. 2013;86:112–120. DOI: https://doi.org/10.1016/j.phytochem.2012.10.003.
Marinov-Serafimov P, Golubinova I, Ilieva A, et al. Allelopathic activity of some parasitic weeds. Acta Agriculturae Serbica. 2017;22(43):89–101. DOI: https://doi.org/10.5937/AASer1743089M.
Fernández-Aparicio M, Soriano G, Masi M, et al. (4Z)-Lachnophyllum Lactone, an Acetylenic Furanone from Conyza bonariensis, Identified for the First Time with Allelopathic Activity against Cuscuta campestris. Agriculture. 2022;12:790. DOI: https://doi.org/10.3390/agriculture12060790.
Mousavi EA, Nasibi F, Manouchehri Kalantari K, et al. Stimulation effect of carrageenan on enzymatic defense system of sweet basil against Cuscuta campestris infection. Journal of Plant Interactions. 2017;12(1):286–294. DOI: https://doi.org/10.1080/17429145.2017.1341560.
Zagorchev LI, Petrova VP, Albanova I, et al. Salinity modulates crop plants suitability as hosts for Cuscuta campestris parasitism. Journal of the Saudi Society of Agricultural Sciences. 2022;21(5);324–330. DOI: https://doi.org/10.1016/j.jssas.2021.10.008.
Benvenuti S, Dinelli G, Bonetti A, et al. Germination ecology, emergence and host detection in Cuscuta campestris. Weed Research. 2005;45(4):270–278. DOI: https://doi.org/10.1111/j.1365-3180.2005.00460.x.
Baráth K. Effect of species environment on host preference of Cuscuta campestris. Plant Ecol. 2021;222:1023–1032. DOI: https://doi.org/10.1007/s11258-021-01158-w.
Mishra JS, Moorthy BTS, Bhan M. Relative tolerance of linseed (Linum usitatissimum) varieties to dodder (Cuscuta campestris) infestation. The Indian Journal of Agricultural Sciences. 2006;76(6):380–382.
Wang WB, Gao FF, Shao MN. et al. First record of field dodder (Cuscuta campestris) parasitizing invasive buffalobur (Solanum rostratum). J Plant Pathol. 2020;102:703–707. DOI: https://doi.org/10.1007/s42161-020-00578-3.
Teofanova D, Lozanova Y, Lambovska K. et al. Cuscuta spp. populations as potential reservoirs and vectors of four plant viruses. Phytoparasitica. 2022;50:555–566. DOI: https://doi.org/10.1007/s12600-022-00981-9.
Dutta DS., Kalita MK, Nath PD. Detection, characterization and management of brinjal little leaf disease in Assam. J. Environ. Biol. 2022;43:460–467. DOI: https://doi.org/10.22438/jeb/43/3/MRN-2002.
Mikona C, Jelkmann W. Replication of Grapevine leafroll-associated virus‑7 (GLRaV‑7) by Cuscuta species and its transmission to herbaceous plants. Plant disease. 2010;94(4):471–476. DOI: https://doi.org/10.1094/PDIS-94-4-0471.
Li FengLan LF, Li MingGuang LM, Zan QiJie ZQ, et al. Effects of the residues of Cuscuta campestris and Mikania micrantha on subsequent plant germination and early growth. Journal of Integrative Agriculture. 2012;11(11):1852–1869.
Shen H, Ye W, Hong L, et al. Influence of the obligate parasite Cuscuta campestris on growth and biomass allocation of its host Mikania micrantha. Journal of Experimental Botany. 2005;56(415):1277–1284. DOI: https://doi.org/10.1093/jxb/eri128.
Shen H, Hong L, Ye W, et al. The influence of the holoparasitic plant Cuscuta campestris on the growth and photosynthesis of its host Mikania micrantha. Journal of Experimental Botany. 2007;58(11):2929–2937. DOI: https://doi.org/10.1093/jxb/erm168.
Wu Z, Guo Q, Li M, et al. Factors restraining parasitism of the invasive vine Mikania micrantha by the holoparasitic plant Cuscuta campestris. Biological invasions. 2013;15:2755–2762. DOI: https://doi.org/10.1007/s10530-013-0490-3.
Lian JY, Ye WH, Cao HL, et al. Influence of obligate parasite Cuscuta campestris on the community of its host Mikania micrantha. Weed Research. 2006;46(6):441–443. DOI: https://doi.org/10.1111/j.1365-3180.2006.00538.x.
Mehrbani M, Choopani R, Fekri A, et al. The efficacy of whey associated with dodder seed extract on moderate-to-severe atopic dermatitis in adults: A randomized, double-blind, placebo-controlled clinical trial. Journal of Ethnopharmacology. 2015;172:325–332. DOI: https://doi.org/10.1016/j.jep.2015.07.003.
Ghulam Yaseen GY, Mushtaq Ahmad MA, Muhammad Zafar MZ, et al. Traditional management of diabetes in Pakistan: ethnobotanical investigation from Traditional Health Practitioners. Journal of Ethnopharmacology. 2015;174:91–117.
Sönmez PE, Kirbağ S, Şule İNCİ. Antifungal and antibacterial effect of dodder (Cuscuta campestris) used for hepatitis treatment of mothers and newborn infants in province Mardin in Turkey. Yuzuncu Yıl University Journal of Agricultural Sciences. 2019;29(4):722–730. DOI: https://doi.org/10.29133/yyutbd.605970.
Lin M-K, Lee M-S, Huang H-C, et al. Cuscuta chinensis and C. campestris Attenuate Scopolamine-Induced Memory Deficit and Oxidative Damage in Mice. Molecules. 2018;23(12):3060. DOI: https://doi.org/10.3390/molecules23123060.
Lee MengShiou LM, Chen ChaoJung CC, Wan Lei WL, et al. Quercetin is increased in heat-processed Cuscuta campestris seeds, which enhances the seed’s anti-inflammatory and anti-proliferative activities. Process Biochemistry. 2011;46(12):2248–2254.
Chang L, Xu D, Zhu J, et al. Herbal Therapy for the Treatment of Acetaminophen-Associated Liver Injury: Recent Advances and Future Perspectives. Front. Pharmacol. 2020;11:313. DOI: https://doi.org/10.3389/fphar.2020.00313.
Mishra S, Sanwal GG. Changes in lipid composition of Brassica siliquae upon infection by Cuscuta. Journal of plant physiology. 1995;146(3):303–306. DOI: https://doi.org/10.1016/S0176-1617(11)82058-4.
Zhou L, Lu QW, Yang BF, et al. Integrated small RNA, mRNA, and degradome sequencing reveals the important role of miRNAs in the interactions between parasitic plant Cuscuta australis and its host Trifolium repens. Scientia Horticulturae. 2021;289: 110458. DOI: https://doi.org/10.1016/j.scienta.2021.110458.
Sarić-Krsmanović M, Dragumilo A, Gajić Umiljendić J, et al. Infestation of field dodder (Cuscuta campestris Yunck.) promotes changes in host dry weight and essential oil production in two aromatic plants, peppermint and chamomile. Plants. 2020;9(10):1286. DOI: https://doi.org/10.3390/plants9101286.
Zagorchev L, Traianova A, Teofanova D, et al. Influence of Cuscuta campestris Yunck. on the photosynthetic activity of Ipomoea tricolor Cav. — in vivo chlorophyll a fluorescence assessment. Photosynthetica. 2020;58: 422–232. DOI: https://doi.org/10.32615/ps.2020.004.
Flores-Sánchez IJ, Garza-Ortiz A. Is there a secondary/specialized metabolism in the genus Cuscuta and which is the role of the host plant?. Phytochemistry Reviews. 2019;18:1299–1335. DOI: https://doi.org/10.1007/s11101-019-09649-5.
Mishra S, Sanwal GG. Effect of Cuscuta infection on chloroplast lipid composition of Brassica leaves. European journal of plant pathology. 1994;100:61–70. DOI: https://doi.org/10.1007/BF01871966.
Landi M, Misra BB, Nocito FF, et al. Metabolic changes induced by Cuscuta campestris Yunck in the host species Artemisia campestris subsp. variabilis (Ten.) Greuter as a strategy for successful parasitisation. Planta. 2022;256(6):118. DOI: https://doi.org/10.1007/s00425-022-04025-8.
Farzan S. Field dodder (Cuscuta campestris) does not promote nutrient transfer between parasitized host plants. The Southwestern Naturalist. 2014;59(4):517–521. DOI: https://doi.org/10.1894/JEM-06.1.
Al-Gburi BKH, Al-Sahaf FH, Al-Fadhal FA, et al. Detection of phytochemical compounds and pigments in seeds and shoots of Cuscuta campestris parasitizing on eggplant. Physiology and Molecular Biology of Plants. 2019;25:253–261. DOI: https://doi.org/10.1007/s12298-018-0630-4.
Dinelli G, Bonetti A, Tibiletti E. Photosynthetic and accessory pigments in Cuscuta campestris Yuncker and some host species. Weed Research. 1993;33(3):253–260. DOI: https://doi.org/10.1111/j.1365-3180.1993.tb01939.x.
Jakovljević VD, Vrvić MM, Vrbničanin S, et al. Phytochemical, Free Radical Scavenging and Antifungal Profile of Cuscuta campestris Yunck. Seeds. Chemistry & Biodiversity. 2018;15(8): e1800174. DOI: https://doi.org/10.1002/cbdv.201800174.
Zhusupova AI. Amino-acid, fatty-acid, and microelement compositions of Cuscuta campestris substance. Chemistry of Natural Compounds. 2009;45:771–772. DOI: https://doi.org/10.1007/s10600-009-9449-0.
Noureen Sh, Noreen S, Ghumman ShA, et al. The genus Cuscuta (Convolvolaceac): An updated review on indigenous uses, phytochemistry, and pharmacology. Iran J Basic Med Sci 2019;22:1225–1252. DOI: https://doi.org/10.22038/ijbms.2019.35296.8407.
Stanley JL, Patterson GW. Sterols and fatty acids of some non-photosynthetic angiosperms. Phytochemistry. 1977;16(10);1611–1612. DOI: https://doi.org/10.1016/0031-9422(77)84040-5.
Hendawy MS, Naeem ZM, Lahloub MF, et al. Chemical and Cytotoxic activities Study of Cuscuta campestris Yunck. World Journal of Pharmaceutical Sciences. 2021;9(2):72–80.
Bakar B, Leong ST, Othman MR, et al. Allelochemicals in Cuscuta campestris Yuncker. The 4th Tropical Weed Science Conference. 2013;4:16–22. DOI: https://doi.org/10.13140/2.1.1708.5763.
Vurro E, Ruotolo R, Ottonello S, et al. Phytochelatins govern zinc/copper homeostasis and cadmium detoxification in Cuscuta campestris parasitizing Daucus carota. Environmental and Experimental Botany. 2011;72(1):26–33. DOI: https://doi.org/10.1016/j.envexpbot.2010.04.017.
Akiner MM, Kiliçkaya Selvi E, Öztürk M, et al. Toxic efficacy of Cuscuta campestris Yunck. (Solanales: Convolvulaceae) and Lupinus albus L. (Fabales: Fabaceae) plant crude extracts against nymphs and adults of Orosanga japonica (Melichar, 1898) (Hemiptera: Ricaniidae) under laboratory conditions. Turkish Journal of Entomology. 2021;45(1):65–75. DOI: https://doi.org/10.16970/entoted.74343.
Hřibová P, Žemlička M, Bartl T, et al. Newly Identified Phenolic Compounds in Parasitic Plants Cuscuta europaea and Cuscuta campestris. Chemické Listy. 2009;103:243–245.
Peng W-H, Chen Y-W, Lee M-S, et al. Hepatoprotective Effect of Cuscuta campestris Yunck. Whole Plant on Carbon Tetrachloride Induced Chronic Liver Injury in Mice. International Journal of Molecular Sciences. 2016;17(12):2056. DOI: https://doi.org/10.3390/ijms17122056.
Behbahani M, Mohabatkar H, Soltani M. Anti-HIV‑1 Activities of Aerial Parts of Ocimum basilicum and its Parasite Cuscuta campestris. J Antivir Antiretrovir. 2013;5:057–061. DOI: https://doi.org/10.4172/jaa.1000064.
Clement Y, Mehrabani M. Short‐term use of whey and doddle seed extract improve objective skin parameters and pruritus in patients with moderate‐to‐severe atopic dermatitis. Focus on Alternative and Complementary Therapies. 2016;1(21):66–67. DOI: https://doi.org/10.1111/fct.12226.
Moradzadeh M, Hosseini A, Rakhshandeh H, et al. Cuscuta campestris induces apoptosis by increasing reactive oxygen species generation in human leukemic cells. Avicenna J Phytomed. 2018;8(3):237–245.
Ashraf R, Shaheen H, Firdous SS, et al. Comparative in vitro biological activity analysis of Cuscuta reflexa Roxb. and C. campestris Yuncker. Bangladesh Journal of Botany. 2020;49(2):249–256.
Жусупова Г. Е., Шалахметова Т. М., Мурзахметова М. К., и др. Антиоксидантная активность некоторых препаратов, полученных на основе растений Казахстана // Вестник Новосибирского государственного педагогического университета. 2013. Т. 5, № 15. С. 43–65. [Zhusupova GE, Shalakhmetova TM, Murzakhmetova MK. Antioxidant activity of some preparations, obtained on the basis of Kazakhstani plants. Novosibirsk State Pedagogical University Bulletin. 2013;5(15):43–65. (in Russ.)]. EDN: https://elibrary.ru/RFUNTF.
Поздняков Д. И., Чиряпкин А. С., Кодониди И. П. Новые производные 6,7‑диметоксихиназолин‑4(3H)-она как перспективные соединения для терапии болезни Альцгеймера // Вопросы биологической, медицинской и фармацевтической химии. 2023. Т. 26, № 4. С. 23–27. [Pozdnyakov DI, Chiriapkin AS, Kodonidi IP. Novel 6,7‑dimethoxyquinazolin‑4(3H)-one derivatives as promising compounds for the therapy of Alzheimer’s disease. Problems of Biological Medical and Pharmaceutical Chemistry. 2023;26(4):23–27. (in Russ.). DOI: https://doi.org/10.29296/25877313-2023-04-04. EDN: https://elibrary.ru/DBQBXS.
Chiriapkin AS, Kodonidi IP, Pozdnyakov DI, et al. Synthesis, in vitro and docking studies of 2‑substituted 5,6,7,8‑tetrahydrobenzo[4,5]thieno[2,3‑d]pyrimidine‑4(3H)-one derivatives as agents for the treatment of Alzheimer’s disease. Chimica Techno Acta. 2022;9(2):20229204. DOI: https://doi.org/10.15826/chimtech.2022.9.2.04.
Chiriapkin AS, Kodonidi IP, Pozdnyakov DI, et al. Synthesis and QSAR of new azomethine derivatives as agents for the treatment of Alzheimer’s disease. Pharmacologyonline. 2021;3:563–584.
Ghule RS, Venkatanarayan R, Thakare SP, et al. Analgesic activity of Cuscuta campestris Yuncker a parasitic plant grown on Nerium indicum Mill. Journal of Advanced Pharmaceutical Technology & Research. 2011;1:45–51.
Costea M, Tardif FJ. The biology of Canadian weeds. 133. Cuscuta campestris Yuncker, C. gronovii Willd. ex Schult., C. umbrosa Beyr. ex Hook., C. epithymum (L.) L. and C. epilinum Weihe. Canadian Journal of Plant Science. 2006;86(1):293–316. DOI: https://doi.org/10.4141/P04-077.
Abutarbush SM. Alfalfa dodder (Cuscuta campestris) toxicity in horses: clinical, haematological and serum biochemical findings. Veterinary Record. 2013;173(4):95–95. DOI: https://doi.org/10.1136/vr.101635.
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2024 А. С. Чиряпкин, Д. С. Золотых, И. П. Кодониди, А. А. Глушко, Л. И. Щербакова
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.