COVID-19 И СОПУТСТВУЮЩАЯ ОНКОЛОГИЧЕСКАЯ ПАТОЛОГИЯ: ТЕРАПЕВТИЧЕСКИЕ ВОЗМОЖНОСТИ И СЛОЖНОСТИ


Авторы

  • А. С. Патания Медицинский центр Университета Небраски
  • Ф. Пратипати Национальный институт биомедицинских инноваций, здоровья и питания
  • Б. А. А. Абдул Университет ПРИСТ
  • С. Чава Медицинский центр Университета Небраски
  • С. С. Катта Университет РЕВА, Парк знаний Рукмини Каттигенахалли
  • С. К. Гупта Банарасский Индуистский университет
  • П. Р. Гангула Медицинский колледж Мехарри
  • М. К. Пандей Медицинская школа Купера Университета Роуэн
  • Д. Л. Дерден Онкологический институт Левина; Университет Калифорнии; СигналРкс Фармасьютикалс
  • С. Н. Байраредди Медицинский центр Университета Небраски
  • К. Б. Чаллагундла Медицинский центр Университета Небраски
https://doi.org/10.32415/jscientia_2021_7_6_28-70

Ключевые слова:

COVID-19, коронавирусы, SARS-CoV-2, онкологические заболевания, воспаление, сопутствующая патология

Аннотация

Коронавирусная инфекция 2019 года (COVID-19) — это вирусное заболевание, вызываемое новым коронавирусом тяжелого острого респираторного синдрома, SARS-CoV-2, который поражает легкие инфицированных лиц. COVID-19 распространяется от человека к человеку посредством респираторных капель, выделяющихся при кашле или чихании инфицированного. Эпидемия COVID-19 началась в городе Ухань (Китай) в конце 2019 года. По состоянию на 29 сентября 2020 года более 235 стран, районов или территорий по всему миру сообщили в общей сложности о 33 441 919 подтвержденных случаях заболевания и о 1 003 497 подтвержденных смертях от COVID-19. Риску заражения подвержены люди любого возраста, но в большинстве случаев тяжелое течение заболевания наблюдается у людей старшей возрастной группы и при наличии сопутствующей патологии, которая снижает иммунитет, например, онкологических заболеваний. Данные многочисленных исследований позволяют предполагать, что пациенты со злокачественными новообразованиями могут быть подвержены более высокому риску тяжелого течения COVID-19 и летального исхода. Поэтому оказание онкологической помощи в условиях пандемии является сложной задачей и требует совместного междисциплинарного подхода для оптимального лечения онкологических больных в условиях стационара. В этом расширенном обзоре мы обсуждаем влияние пандемии COVID-19 на онкологических больных и оказание им медицинской помощи. Помимо этого, обзор содержит общие сведения о пандемии, вызванной SARS-CoV-2, характеристику генома вируса, описание патофизиологии COVID-19 и связанных с ней сигнальных путей, играющих важную роль при онкопатологии, а также информацию о вариантах использования противоопухолевых средств для лечения COVID-19.

Оригинал статьи: Pathania AS, Prathipati P, Abdul BAA, et al. COVID-19 and Cancer Comorbidity: Therapeutic Opportunities and Challenges. Theranostics. 2021;11(2):731-753. DOI: 10.7150/thno.51471.

Статья переведена на русский язык и опубликована согласно условиям лицензии Creative Commons Attribution 4.0.

Библиографические ссылки

Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. DOI: 10.1056/NEJMoa2001017

Holshue ML, DeBolt C, Lindquist S, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020;382(10):929-936. DOI: 10.1056/NEJMoa2001191

Cohen J, Normile D. New SARS-like virus in China triggers alarm. Science. 2020;367(6475):234-235. DOI: 10.1126/science.367.6475.234

Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. DOI: 10.1016/j.jaut.2020.102433

Singu S, Acharya A, Challagundla K, Byrareddy SN. Impact of Social Determinants of Health on the Emerging COVID-19 Pandemic in the United States. Front Public Health. 2020;8:406. DOI: 10.3389/fpubh.2020.00406

Li P, Kaslan M, Lee SH, et al. Progress in Exosome Isolation Techniques. Theranostics. 2017;7(3):789-804. DOI: 10.7150/thno.18133

Liu J, Liao X, Qian S, et al. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, Shenzhen, China, 2020. Emerg Infect Dis. 2020;26(6):1320-1323. DOI: 10.3201/eid2606.200239

Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514-523. DOI: 10.1016/S0140-6736(20)30154-9

Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199-1207. DOI: 10.1056/NEJMoa2001316

Santarpia JL, Rivera DN, Herrera VL, et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep. 2020;10(1):12732. DOI: 10.1038/s41598-020-69286-3

Brodeur GM, Seeger RC, Schwab M, et al. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224(4653):1121-1124. DOI: 10.1126/science.6719137

Cholankeril G, Podboy A, Aivaliotis VI, et al. High Prevalence of Concurrent Gastrointestinal Manifestations in Patients With Severe Acute Respiratory Syndrome Coronavirus 2: Early Experience From California. Gastroenterology. 2020;159(2):775-777. DOI: 10.1053/j.gastro.2020.04.008

Liu F, Zhang Q, Huang C, et al. CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients. Theranostics. 2020;10(12):5613-5622. DOI: 10.7150/thno.45985

Zhao W, Zhong Z, Xie X, et al. CT Scans of Patients with 2019 Novel Coronavirus (COVID-19) Pneumonia. Theranostics. 2020;10(10):4606-4613. DOI: 10.7150/thno.45016

Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. DOI: 10.1016/S0140-6736(20)30183-5

Götzinger F, Santiago-García B, Noguera-Julián A, et al. COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Health. 2020;4(9):653-661. DOI: 10.1016/S2352-4642(20)30177-2

Cao J, Zheng Y, Luo Z, et al. Myocardial injury and COVID-19: Serum hs-cTnI level in risk stratification and the prediction of 30-day fatality in COVID-19 patients with no prior cardiovascular disease. Theranostics. 2020;10(21):9663-9673. DOI: 10.7150/thno.47980

Tersalvi G, Veronese G, Winterton D. Emerging evidence of myocardial injury in COVID-19: A path through the smoke. Theranostics. 2020;10(21):9888-9889. DOI: 10.7150/thno.50788

Dai M, Liu D, Liu M, et al. Patients with Cancer Appear More Vulnerable to SARS-CoV-2: A Multicenter Study during the COVID-19 Outbreak. Cancer Discov. 2020;10(6):783-791. DOI: 10.1158/2159-8290.CD-20-0422

Li Y, Han X, Alwalid O, et al. Baseline characteristics and risk factors for short-term outcomes in 132 COVID-19 patients with diabetes in Wuhan China: A retrospective study. Diabetes Res Clin Pract. 2020;166:108299. DOI: 10.1016/j.diabres.2020.108299

Nishiga M, Wang DW, Han Y, et al. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020;17(9):543-558. DOI: 10.1038/s41569-020-0413-9

What's New in the Guidelines. URL: https://www.covid19treatmentguidelines.nih.gov/whats-new.

Chan JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1):221-236. DOI: 10.1080/22221751.2020.1719902

Wang H, Li X, Li T, et al. The genetic sequence, origin, and diagnosis of SARS-CoV-2. Eur J Clin Microbiol Infect Dis. 2020;39(9):1629-1635. DOI: 10.1007/s10096-020-03899-4

Walls AC, Park YJ, Tortorici MA, et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-292.e6. DOI: 10.1016/j.cell.2020.02.058

Wan Y, Shang J, Graham R, et al. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):e00127-20. DOI: 10.1128/JVI.00127-20

Premkumar L, Segovia-Chumbez B, Jadi R, et al. The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol. 2020;5(48):eabc8413. DOI: 10.1126/sciimmunol.abc8413

Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 2020;78(4):779-784.e5. DOI: 10.1016/j.molcel.2020.04.022

Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-1263. DOI: 10.1126/science.abb2507

Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-452. DOI: 10.1038/s41591-020-0820-9

Burkard C, Verheije MH, Wicht O, et al. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog. 2014;10(11):e1004502. DOI: 10.1371/journal.ppat.1004502

Milewska A, Nowak P, Owczarek K, et al. Entry of Human Coronavirus NL63 into the Cell. J Virol. 2018;92(3):e01933-17. DOI: 10.1128/JVI.01933-17

Jaimes JA, Millet JK, Whittaker GR. Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site. iScience. 2020;23(6):101212. DOI: 10.1016/j.isci.2020.101212

Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology. 2018;28(7):443-467. DOI: 10.1093/glycob/cwy021

Cook JD, Lee JE. The secret life of viral entry glycoproteins: moonlighting in immune evasion. PLoS Pathog. 2013;9(5):e1003258. DOI: 10.1371/journal.ppat.1003258

Tse LV, Hamilton AM, Friling T, Whittaker GR. A novel activation mechanism of avian influenza virus H9N2 by furin. J Virol. 2014;88(3):1673-1683. DOI: 10.1128/JVI.02648-13

van Dorp L, Acman M, Richard D, et al. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect Genet Evol. 2020;83:104351. DOI: 10.1016/j.meegid.2020.104351

Graham RL, Sparks JS, Eckerle LD, et al. SARS coronavirus replicase proteins in pathogenesis. Virus Res. 2008;133(1):88-100. DOI: 10.1016/j.virusres.2007.02.017

Forni D, Cagliani R, Mozzi A, et al. Extensive Positive Selection Drives the Evolution of Nonstructural Proteins in Lineage C Betacoronaviruses. J Virol. 2016;90(7):3627-3639. DOI: 10.1128/JVI.02988-15

Angeletti S, Benvenuto D, Bianchi M, et al. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis. J Med Virol. 2020;92(6):584-588. DOI: 10.1002/jmv.25719

Pachetti M, Marini B, Benedetti F, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 2020;18(1):179. DOI: 10.1186/s12967-020-02344-6

Wang C, Liu Z, Chen Z, et al. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J Med Virol. 2020;92(6):667-674. DOI: 10.1002/jmv.25762

Kang DH, Weaver MT, Park NJ, et al. Significant impairment in immune recovery after cancer treatment. Nurs Res. 2009;58(2):105-114. DOI: 10.1097/NNR.0b013e31818fcecd

Wu MY, Li CJ, Yiang GT, et al. Molecular Regulation of Bone Metastasis Pathogenesis. Cell Physiol Biochem. 2018;46(4):1423-1438. DOI: 10.1159/000489184

Rogado J, Pangua C, Serrano-Montero G, et al. Covid-19 and lung cancer: A greater fatality rate? Lung Cancer. 2020;146:19-22. DOI: 10.1016/j.lungcan.2020.05.034

Zhang L, Zhu F, Xie L, et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol. 2020;31(7):894-901. DOI: 10.1016/j.annonc.2020.03.296

Kuderer NM, Choueiri TK, Shah DP, et al. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. 2020;395(10241):1907-1918. DOI: 10.1016/S0140-6736(20)31187-9

Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335-337. DOI: 10.1016/S1470-2045(20)30096-6

Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020;323(18):1775-1776. DOI: 10.1001/jama.2020.4683

Trapani D, Marra A, Curigliano G. The experience on coronavirus disease 2019 and cancer from an oncology hub institution in Milan, Lombardy Region. Eur J Cancer. 2020;132:199-206. DOI: 10.1016/j.ejca.2020.04.017

Park JR, Bagatell R, London WB, et al. Children's Oncology Group's 2013 blueprint for research: neuroblastoma. Pediatr Blood Cancer. 2013;60(6):985-993. DOI: 10.1002/pbc.24433

Mehta V, Goel S, Kabarriti R, et al. Case Fatality Rate of Cancer Patients with COVID-19 in a New York Hospital System. Cancer Discov. 2020;10(7):935-941. DOI: 10.1158/2159-8290.CD-20-0516

Lara Álvarez MÁ, Rogado Revuelta J, Obispo Portero B, et al. COVID-19 mortality in cancer patients in a Madrid hospital during the first 3 weeks of the epidemic. Med Clin (Engl Ed). 2020;155(5):202-204. DOI: 10.1016/j.medcle.2020.05.012

Rugge M, Zorzi M, Guzzinati S. SARS-CoV-2 infection in the Italian Veneto region: adverse outcomes in patients with cancer. Nat Cancer. 2020;1(8):784-788. DOI: 10.1038/s43018-020-0104-9

Luo J, Rizvi H, Preeshagul IR, et al. COVID-19 in patients with lung cancer. Ann Oncol. 2020;31(10):1386-1396. DOI: 10.1016/j.annonc.2020.06.007

Garassino MC, Whisenant JG, Huang LC, et al. COVID-19 in patients with thoracic malignancies (TERAVOLT): first results of an international, registry-based, cohort study. Lancet Oncol. 2020;21(7):914-922. DOI: 10.1016/S1470-2045(20)30314-4

Passamonti F, Cattaneo C, Arcaini L, et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study. Lancet Haematol. 2020;7(10):e737-e745. DOI: 10.1016/S2352-3026(20)30251-9

Sanchez-Pina JM, Rodríguez Rodriguez M, Castro Quismondo N, et al. Clinical course and risk factors for mortality from COVID-19 in patients with haematological malignancies. Eur J Haematol. 2020;105(5):597-607. DOI: 10.1111/ejh.13493

Vuagnat P, Frelaut M, Ramtohul T, et al. COVID-19 in breast cancer patients: a cohort at the Institut Curie hospitals in the Paris area. Breast Cancer Res. 2020;22(1):55. DOI: 10.1186/s13058-020-01293-8

Aries JA, Davies JK, Auer RL, et al. Clinical outcome of coronavirus disease 2019 in haemato-oncology patients. Br J Haematol. 2020;190(2):e64-e67. DOI: 10.1111/bjh.16852

Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-220. DOI: 10.1038/s41586-020-2180-5

Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. DOI: 10.1016/j.cell.2020.02.052

Burrell LM, Johnston CI, Tikellis C, Cooper ME. ACE2, a new regulator of the renin-angiotensin system. Trends Endocrinol Metab. 2004;15(4):166-169. DOI: 10.1016/j.tem.2004.03.001

Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-637. DOI: 10.1002/path.1570

Devaux CA, Rolain JM, Raoult D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J Microbiol Immunol Infect. 2020;53(3):425-435. DOI: 10.1016/j.jmii.2020.04.015

Chen J, Jiang Q, Xia X, et al. Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell. 2020;19(7):e13168. DOI: 10.1111/acel.13168

Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. DOI: 10.1038/s41586-020-2012-7

Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020;117(21):11727-11734. DOI: 10.1073/pnas.2003138117

Deshotels MR, Xia H, Sriramula S, et al. Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an angiotensin II type I receptor-dependent mechanism. Hypertension. 2014;64(6):1368-1375. DOI: 10.1161/HYPERTENSIONAHA.114.03743

Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2(7):247-257. DOI: 10.1002/emmm.201000080

Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N Engl J Med. 2020;383(4):334-346. DOI: 10.1056/NEJMoa2021680

Zong H, Yin B, Zhou H, et al. Loss of angiotensin-converting enzyme 2 promotes growth of gallbladder cancer. Tumour Biol. 2015;36(7):5171-5177. DOI: 10.1007/s13277-015-3171-2

Yu C, Tang W, Wang Y, et al. Downregulation of ACE2/Ang-(1-7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Lett. 2016;376(2):268-277. DOI: 10.1016/j.canlet.2016.04.006

Zhou L, Zhang R, Yao W, et al. Decreased expression of angiotensin-converting enzyme 2 in pancreatic ductal adenocarcinoma is associated with tumor progression. Tohoku J Exp Med. 2009;217(2):123-131. DOI: 10.1620/tjem.217.123

Xu J, Fan J, Wu F, et al. The ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Pleiotropic Roles in Cancer. Front Physiol. 2017;8:276. DOI: 10.3389/fphys.2017.00276

Qian YR, Guo Y, Wan HY, et al. Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition. Oncol Rep. 2013;29(6):2408-2414. DOI: 10.3892/or.2013.2370

Stewart CA, Gay CM, Ramkumar K, et al. SARS-CoV-2 infection induces EMT-like molecular changes, including ZEB1-mediated repression of the viral receptor ACE2, in lung cancer models. bioRxiv. 2020;Version 1: Preprint. 2020 May 29

Yang J, Li H, Hu S, Zhou Y. ACE2 correlated with immune infiltration serves as a prognostic biomarker in endometrial carcinoma and renal papillary cell carcinoma: implication for COVID-19. Aging (Albany NY). 2020;12(8):6518-6535. DOI: 10.18632/aging.103100

Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2009;1(2):239-259. DOI: 10.2217/epi.09.33

Lucas JM, Heinlein C, Kim T, et al. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 2014;4(11):1310-1325. DOI: 10.1158/2159-8290.CD-13-1010

Wang Q, Li W, Liu XS, et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell. 2007;27(3):380-392. DOI: 10.1016/j.molcel.2007.05.041

Shaw GL, Whitaker H, Corcoran M, et al. The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer. Eur Urol. 2016;70(2):214-218. DOI: 10.1016/j.eururo.2015.10.042

Montopoli M, Zumerle S, Vettor R, et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532). Ann Oncol. 2020;31(8):1040-1045. DOI: 10.1016/j.annonc.2020.04.479

https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/weekly-surveillance-report

Burgueño JF, Reich A, Hazime H, et al. Expression of SARS-CoV-2 Entry Molecules ACE2 and TMPRSS2 in the Gut of Patients With IBD. Inflamm Bowel Dis. 2020;26(6):797-808. DOI: 10.1093/ibd/izaa085

Zang R, Gomez Castro MF, McCune BT, et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020;5(47):eabc3582. DOI: 10.1126/sciimmunol.abc3582

Wu ZS, Zhang ZQ, Wu S. Focus on the Crosstalk between COVID-19 and Urogenital Systems. J Urol. 2020;204(1):7-8. DOI: 10.1097/JU.0000000000001068

Vaarala MH, Porvari K, Kyllönen A, et al. The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: detection of mutated TMPRSS2 form in a case of aggressive disease. Int J Cancer. 2001;94(5):705-710. DOI: 10.1002/ijc.1526

Bahmad HF, Abou-Kheir W. Crosstalk between COVID-19 and prostate cancer. Prostate Cancer Prostatic Dis. 2020;23(4):561-563. DOI: 10.1038/s41391-020-0262-y

https://covid19.who.int

Spitz R, Hero B, Simon T, Berthold F. Loss in chromosome 11q identifies tumors with increased risk for metastatic relapses in localized and 4S neuroblastoma. Clin Cancer Res. 2006;12(11 Pt 1):3368-3373. DOI: 10.1158/1078-0432.CCR-05-2495

Xu PP, Tian RH, Luo S, et al. Risk factors for adverse clinical outcomes with COVID-19 in China: a multicenter, retrospective, observational study. Theranostics. 2020;10(14):6372-6383. DOI: 10.7150/thno.46833

Spitz R, Hero B, Westermann F, et al. Fluorescence in situ hybridization analyses of chromosome band 1p36 in neuroblastoma detect two classes of alterations. Genes Chromosomes Cancer. 2002;34(3):299-305. DOI: 10.1002/gcc.10070

https://www.cdc.gov/coronavirus/2019-ncov/hcp/non-us-settings/overview

Datta PK, Liu F, Fischer T, et al. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics. 2020;10(16):7448-7464. DOI: 10.7150/thno.48076

Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681-687. DOI: 10.1038/s41591-020-0868-6

Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol Sin. 2020;35(3):266-271. DOI: 10.1007/s12250-020-00207-4

Tian S, Hu W, Niu L, et al. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. J Thorac Oncol. 2020;15(5):700-704. DOI: 10.1016/j.jtho.2020.02.010

Tian J, Yuan X, Xiao J, et al. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020;21(7):893-903. DOI: 10.1016/S1470-2045(20)30309-0

Diao B, Wang C, Tan Y, et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020;11:827. DOI: 10.3389/fimmu.2020.00827

McDermott DF, Atkins MB. PD-1 as a potential target in cancer therapy. Cancer Med. 2013;2(5):662-673. DOI: 10.1002/cam4.106

Vanni G, Materazzo M, Pellicciaro M, et al. Breast Cancer and COVID-19: The Effect of Fear on Patients' Decision-making Process. In Vivo. 2020;34(3 Suppl):1651-1659. DOI: 10.21873/invivo.11957

Ñamendys-Silva SA. Respiratory support for patients with COVID-19 infection. Lancet Respir Med. 2020;8(4):e18. DOI: 10.1016/S2213-2600(20)30110-7

Ledford H. Coronavirus breakthrough: dexamethasone is first drug shown to save lives. Nature. 2020;582(7813):469. DOI: 10.1038/d41586-020-01824-5

Arshad S, Kilgore P, Chaudhry ZS, et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis. 2020;97:396-403. DOI: 10.1016/j.ijid.2020.06.099

Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Publica. 2020;44:e40. DOI: 10.26633/RPSP.2020.40

Piechotta V, Chai KL, Valk SJ, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev. 2020;7(7):CD013600. DOI: 10.1002/14651858.CD013600.pub2

Michot JM, Albiges L, Chaput N, et al. Tocilizumab, an anti-IL-6 receptor antibody, to treat COVID-19-related respiratory failure: a case report. Ann Oncol. 2020;31(7):961-964. DOI: 10.1016/j.annonc.2020.03.300

Wan Y, Shang J, Graham R, et al. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):e00127-20. DOI: 10.1128/JVI.00127-20

Fox RI. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum. 1993;23(2 Suppl 1):82-91. DOI: 10.1016/s0049-0172(10)80012-5

Nirk EL, Reggiori F, Mauthe M. Hydroxychloroquine in rheumatic autoimmune disorders and beyond. EMBO Mol Med. 2020;12(8):e12476. DOI: 10.15252/emmm.202012476

Piconi S, Parisotto S, Rizzardini G, et al. Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood. 2011;118(12):3263-3272. DOI: 10.1182/blood-2011-01-329060

Yao TT, Qian JD, Zhu WY, et al. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J Med Virol. 2020;92(6):556-563. DOI: 10.1002/jmv.25729

Rivera DR, Peters S, Panagiotou OA, et al. Utilization of COVID-19 Treatments and Clinical Outcomes among Patients with Cancer: A COVID-19 and Cancer Consortium (CCC19) Cohort Study. Cancer Discov. 2020;10(10):1514-1527. DOI: 10.1158/2159-8290.CD-20-0941

Geleris J, Sun Y, Platt J, et al. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020;382(25):2411-2418. DOI: 10.1056/NEJMoa2012410

Rosenberg ES, Dufort EM, Udo T, et al. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA. 2020;323(24):2493-2502. DOI: 10.1001/jama.2020.8630

RECOVERY Collaborative Group, Horby P, Mafham M, et al. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020;383(21):2030-2040. DOI: 10.1056/NEJMoa2022926

https://www.nih.gov/news-events/news-releases/nih-halts-clinical-trial-hydroxychloroquine

https://www.covid19treatmentguidelines.nih.gov/antiviral-therapy/chloroquine-or-hydroxychloroquine-with-or-without-azithromycin/

Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355-362. DOI: 10.1038/s41577-020-0331-4

Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020;117(20):10970-10975. DOI: 10.1073/pnas.2005615117

Liu J, Wan M, Lyon CJ, Hu TY. Nanomedicine therapies modulating Macrophage Dysfunction: a potential strategy to attenuate Cytokine Storms in severe infections. Theranostics. 2020;10(21):9591-9600. DOI: 10.7150/thno.47982

Guaraldi G, Meschiari M, Cozzi-Lepri A, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2020;2(8):e474-e484. DOI: 10.1016/S2665-9913(20)30173-9

Campochiaro C, Della-Torre E, Cavalli G, et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. Eur J Intern Med. 2020;76:43-49. DOI: 10.1016/j.ejim.2020.05.021

Magee DJ, Jhanji S, Poulogiannis G, et al. Nonsteroidal anti-inflammatory drugs and pain in cancer patients: a systematic review and reappraisal of the evidence. Br J Anaesth. 2019;123(2):e412-e423. DOI: 10.1016/j.bja.2019.02.028

Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860-867. DOI: 10.1038/nature01322

Renner A, Marth K, Patocka K, Pohl W. COVID-19 in a severe eosinophilic asthmatic receiving benralizumab - a case study. J Asthma. 2021;58(9):1270-1272. DOI: 10.1080/02770903.2020.1781165

García-Moguel I, Díaz Campos R, Alonso Charterina S, et al. COVID-19, severe asthma, and biologics. Ann Allergy Asthma Immunol. 2020;125(3):357-359.e1. DOI: 10.1016/j.anai.2020.06.012

Kaplan SS, Hicks CB. Lopinavir/ritonavir in the treatment of human immunodeficiency virus infection. Expert Opin Pharmacother. 2005;6(9):1573-1585. DOI: 10.1517/14656566.6.9.1573

Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787-1799. DOI: 10.1056/NEJMoa2001282

Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695-1704. DOI: 10.1016/S0140-6736(20)31042-4

Group RC, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. N Engl J Med. 2020: Published on July 17, 2020.

Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. DOI: 10.1038/s41368-020-0074-x

Cook AM, McDonnell AM, Lake RA, Nowak AK. Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology. 2015;5(3):e1066062. DOI: 10.1080/2162402X.2015.1066062

Rubinstein SM, Steinharter JA, Warner J, et al. The COVID-19 and Cancer Consortium: A Collaborative Effort to Understand the Effects of COVID-19 on Patients with Cancer. Cancer Cell. 2020;37(6):738-741. DOI: 10.1016/j.ccell.2020.04.018

Ceschi A, Noseda R, Palin K, Verhamme K. Immune Checkpoint Inhibitor-Related Cytokine Release Syndrome: Analysis of WHO Global Pharmacovigilance Database. Front Pharmacol. 2020;11:557. DOI: 10.3389/fphar.2020.00557

Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-574. DOI: 10.1016/S0140-6736(20)30251-8

Lau SK, Woo PC, Yip CC, et al. Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol. 2006;44(6):2063-2071. DOI: 10.1128/JCM.02614-05

Kumar D, Dey T. Treatment delays in oncology patients during COVID-19 pandemic: A perspective. J Glob Health. 2020;10(1):010367. DOI: 10.7189/jogh.10.010367

Matsuo T, Kobayashi D, Taki F, et al. Prevalence of Health Care Worker Burnout During the Coronavirus Disease 2019 (COVID-19) Pandemic in Japan. JAMA Netw Open. 2020;3(8):e2017271. DOI: 10.1001/jamanetworkopen.2020.17271

Rajkumar RP. COVID-19 and mental health: A review of the existing literature. Asian J Psychiatr. 2020;52:102066. DOI: 10.1016/j.ajp.2020.102066

Ochoa Arnedo C, Sánchez N, Sumalla EC, Casellas-Grau A. Stress and Growth in Cancer: Mechanisms and Psychotherapeutic Interventions to Facilitate a Constructive Balance. Front Psychol. 2019;10:177. DOI: 10.3389/fpsyg.2019.00177

Tsamakis K, Triantafyllis AS, Tsiptsios D, et al. COVID-19 related stress exacerbates common physical and mental pathologies and affects treatment (Review). Exp Ther Med. 2020;20(1):159-162. DOI: 10.3892/etm.2020.8671

https://www.esmo.org/guidelines/cancer-patient-management-during-the-covid-19-pandemic

Richards M, Anderson M, Carter P, et al. The impact of the COVID-19 pandemic on cancer care. Nat Cancer. 2020;1(6):565-567. DOI: 10.1038/s43018-020-0074-y

Dietz JR, Moran MS, Isakoff SJ, et al. Recommendations for prioritization, treatment, and triage of breast cancer patients during the COVID-19 pandemic. the COVID-19 pandemic breast cancer consortium. Breast Cancer Res Treat. 2020;181(3):487-497. DOI: 10.1007/s10549-020-05644-z

Shinder BM, Patel HV, Sterling J, et al. Urologic oncology surgery during COVID-19: a rapid review of current triage guidance documents. Urol Oncol. 2020;38(7):609-614. DOI: 10.1016/j.urolonc.2020.05.017

Verma R, Foster RE, Horgan K, et al. Lymphocyte depletion and repopulation after chemotherapy for primary breast cancer. Breast Cancer Res. 2016;18(1):10. DOI: 10.1186/s13058-015-0669-x

https://www.asco.org/asco-coronavirus-resources/care-individuals-cancer-during-covid-19/cancer-treatment-supportive-care

Payne K. Ethical issues related to pandemic flu planning and response. AACN Adv Crit Care. 2007;18(4):356-360. DOI: 10.1097/01.AACN.0000298627.07535.76

Adams DP. Wartime bureaucracy and penicillin allocation: the Committee on Chemotherapeutic and Other Agents, 1942-44. J Hist Med Allied Sci. 1989;44(2):196-217. DOI: 10.1093/jhmas/44.2.196

Rosenbaum L. Facing Covid-19 in Italy - Ethics, Logistics, and Therapeutics on the Epidemic's Front Line. N Engl J Med. 2020;382(20):1873-1875. DOI: 10.1056/NEJMp2005492

Xie J, Tong Z, Guan X, et al. Clinical Characteristics of Patients Who Died of Coronavirus Disease 2019 in China. JAMA Netw Open. 2020;3(4):e205619. DOI: 10.1001/jamanetworkopen.2020.5619

Monaghesh E, Hajizadeh A. The role of telehealth during COVID-19 outbreak: a systematic review based on current evidence. BMC Public Health. 2020;20(1):1193. DOI: 10.1186/s12889-020-09301-4

Lesslie M, Parikh JR. Implementing a Multidisciplinary Tumor Board in the Community Practice Setting. Diagnostics (Basel). 2017;7(4):55. DOI: 10.3390/diagnostics7040055

Wein W. Drug development: successes, problems and pitfalls-the industry perspective. ESMO Open. 2016;1(1):e000033. DOI: 10.1136/esmoopen-2016-000033

Yella JK, Yaddanapudi S, Wang Y, Jegga AG. Changing Trends in Computational Drug Repositioning. Pharmaceuticals (Basel). 2018;11(2):57. DOI: 10.3390/ph11020057

Kale VP, Habib H, Chitren R, et al. Old drugs, new uses: Drug repurposing in hematological malignancies. Semin Cancer Biol. 2021;68:242-248. DOI: 10.1016/j.semcancer.2020.03.005

Zhou Y, Hou Y, Shen J, et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:14. DOI: 10.1038/s41421-020-0153-3

Fan HH, Wang LQ, Liu WL, et al. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin Med J (Engl). 2020;133(9):1051-1056. DOI: 10.1097/CM9.0000000000000797

Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov. 2020;19(3):149-150. DOI: 10.1038/d41573-020-00016-0

Liu X, Liu C, Liu G, et al. COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics. 2020;10(17):7821-7835. DOI: 10.7150/thno.47987

Du Y, Tu L, Zhu P, et al. Clinical Features of 85 Fatal Cases of COVID-19 from Wuhan. A Retrospective Observational Study. Am J Respir Crit Care Med. 2020;201(11):1372-1379. DOI: 10.1164/rccm.202003-0543OC

Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, et al. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62-75. DOI: 10.1016/j.cytogfr.2020.06.001

Ragab D, Salah Eldin H, Taeimah M, et al. The COVID-19 Cytokine Storm; What We Know So Far. Front Immunol. 2020;11:1446. DOI: 10.3389/fimmu.2020.01446

Mascarenhas J, Hoffman R. Ruxolitinib: the first FDA approved therapy for the treatment of myelofibrosis. Clin Cancer Res. 2012;18(11):3008-3014. DOI: 10.1158/1078-0432.CCR-11-3145

Lussana F, Rambaldi A. Inflammation and myeloproliferative neoplasms. J Autoimmun. 2017;85:58-63. DOI: 10.1016/j.jaut.2017.06.010

La Rosée F, Bremer HC, Gehrke I, et al. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia. 2020;34(7):1805-1815. DOI: 10.1038/s41375-020-0891-0

Roschewski M, Lionakis MS, Sharman JP, et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci Immunol. 2020;5(48):eabd0110. DOI: 10.1126/sciimmunol.abd0110

https://www.cancer.gov/news-events/cancer-currents-blog/2017/acalabrutinib-fda-mantle-cell-lymphoma

Lee KG, Xu S, Kang ZH, et al. Bruton's tyrosine kinase phosphorylates Toll-like receptor 3 to initiate antiviral response. Proc Natl Acad Sci U S A. 2012;109(15):5791-5796. DOI: 10.1073/pnas.1119238109

Weber ANR, Bittner Z, Liu X, et al. Bruton's Tyrosine Kinase: An Emerging Key Player in Innate Immunity. Front Immunol. 2017;8:1454. DOI: 10.3389/fimmu.2017.01454

Zhou Q, Chen V, Shannon CP, et al. Interferon-α2b Treatment for COVID-19. Front Immunol. 2020;11:1061. DOI: 10.3389/fimmu.2020.01061

Yeager CL, Ashmun RA, Williams RK, et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357(6377):420-422. DOI: 10.1038/357420a0

Asmana Ningrum R. Human interferon alpha-2b: a therapeutic protein for cancer treatment. Scientifica (Cairo). 2014;2014:970315. DOI: 10.1155/2014/970315

Xu P, Huang J, Fan Z, et al. Arbidol/IFN-α2b therapy for patients with corona virus disease 2019: a retrospective multicenter cohort study. Microbes Infect. 2020;22(4-5):200-205. DOI: 10.1016/j.micinf.2020.05.012

Grein J, Ohmagari N, Shin D, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020;382(24):2327-2336. DOI: 10.1056/NEJMoa2007016

Morton JJ, Bird G, Refaeli Y, Jimeno A. Humanized Mouse Xenograft Models: Narrowing the Tumor-Microenvironment Gap. Cancer Res. 2016;76(21):6153-6158. DOI: 10.1158/0008-5472.CAN-16-1260

Jiang Y, Chen D, Cai D, et al. Effectiveness of remdesivir for the treatment of hospitalized COVID-19 persons: A network meta-analysis. J Med Virol. 2021;93(2):1171-1174. DOI: 10.1002/jmv.26443

Williamson BN, Feldmann F, Schwarz B, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature. 2020;585(7824):273-276. DOI: 10.1038/s41586-020-2423-5

Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 - Final Report. N Engl J Med. 2020;383(19):1813-1826. DOI: 10.1056/NEJMoa2007764

Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2017;14(8):455-466. DOI: 10.1038/nrgastro.2017.71

Hashemian SM, Farhadi T, Velayati AA. A Review on Remdesivir: A Possible Promising Agent for the Treatment of COVID-19. Drug Des Devel Ther. 2020;14:3215-3222. DOI: 10.2147/DDDT.S261154

Neogi U, Hill KJ, Ambikan AT, et al. Feasibility of Known RNA Polymerase Inhibitors as Anti-SARS-CoV-2 Drugs. Pathogens. 2020;9(5):320. DOI: 10.3390/pathogens9050320

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200928-weekly-epi-update.pdf?sfvrsn=9e354665_6

Wu A, Peng Y, Huang B, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020;27(3):325-328. DOI: 10.1016/j.chom.2020.02.001

Zhou H, Chen X, Hu T, et al. A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Curr Biol. 2020;30(11):2196-2203.e3. DOI: 10.1016/j.cub.2020.05.023

Miyashita H, Mikami T, Chopra N, et al. Do patients with cancer have a poorer prognosis of COVID-19? An experience in New York City. Ann Oncol. 2020;31(8):1088-1089. DOI: 10.1016/j.annonc.2020.04.006

Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985. DOI: 10.1136/bmj.m1985

Meng Y, Lu W, Guo E, et al. Cancer history is an independent risk factor for mortality in hospitalized COVID-19 patients: a propensity score-matched analysis. J Hematol Oncol. 2020;13(1):75. DOI: 10.1186/s13045-020-00907-0

Rogado J, Obispo B, Pangua C, et al. Covid-19 transmission, outcome and associated risk factors in cancer patients at the first month of the pandemic in a Spanish hospital in Madrid. Clin Transl Oncol. 2020;22(12):2364-2368. DOI: 10.1007/s12094-020-02381-z

Gupta S, Hayek SS, Wang W, et al. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. JAMA Intern Med. 2020;180(11):1436-1447. DOI: 10.1001/jamainternmed.2020.3596

Yang K, Sheng Y, Huang C, et al. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020;21(7):904-913. DOI: 10.1016/S1470-2045(20)30310-7

Lee LYW, Cazier JB, Starkey T, et al. COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: a prospective cohort study. Lancet Oncol. 2020;21(10):1309-1316. DOI: 10.1016/S1470-2045(20)30442-3

Lee LY, Cazier JB, Angelis V, et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. Lancet. 2020;395(10241):1919-1926. DOI: 10.1016/S0140-6736(20)31173-9

Robilotti EV, Babady NE, Mead PA, et al. Determinants of COVID-19 disease severity in patients with cancer. Nat Med. 2020;26(8):1218-1223. DOI: 10.1038/s41591-020-0979-0

Mato AR, Roeker LE, Lamanna N, et al. Outcomes of COVID-19 in patients with CLL: a multicenter international experience. Blood. 2020;136(10):1134-1143. DOI: 10.1182/blood.2020006965

Bisogno G, Provenzi M, Zama D, et al. Clinical Characteristics and Outcome of Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Italian Pediatric Oncology Patients: A Study From the Infectious Diseases Working Group of the Associazione Italiana di Oncologia e Ematologia Pediatrica. J Pediatric Infect Dis Soc. 2020;9(5):530-534. DOI: 10.1093/jpids/piaa088

Pinato DJ, Lee AJX, Biello F, et al. Presenting Features and Early Mortality from SARS-CoV-2 Infection in Cancer Patients during the Initial Stage of the COVID-19 Pandemic in Europe. Cancers (Basel). 2020;12(7):1841. DOI: 10.3390/cancers12071841

Patel VG, Zhong X, Liaw B, et al. Does androgen deprivation therapy protect against severe complications from COVID-19? Ann Oncol. 2020;31(10):1419-1420. DOI: 10.1016/j.annonc.2020.06.023

Flinn IW, O'Brien S, Kahl B, et al. Duvelisib, a novel oral dual inhibitor of PI3K-δ,γ, is clinically active in advanced hematologic malignancies. Blood. 2018;131(8):877-887. DOI: 10.1182/blood-2017-05-786566

Nelson AM, Gilliland KL, Cong Z, Thiboutot DM. 13-cis Retinoic acid induces apoptosis and cell cycle arrest in human SEB-1 sebocytes. J Invest Dermatol. 2006;126(10):2178-2189. DOI: 10.1038/sj.jid.5700289

Gunda V, Pathania AS, Chava S, et al. Amino Acids Regulate Cisplatin Insensitivity in Neuroblastoma. Cancers (Basel). 2020;12(9):2576. DOI: 10.3390/cancers12092576

Mahapatra S, Challagundla KB. Cancer, Neuroblastoma. StatPearls. Treasure Island (FL). 2020

Chava S, Reynolds CP, Pathania AS, et al. miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol Oncol. 2020;14(1):180-196. DOI: 10.1002/1878-0261.12588

Challagundla KB, Wise PM, Neviani P, et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst. 2015;107(7):djv135. DOI: 10.1093/jnci/djv135

Mudgapalli N, Shaw BP, Chava S, Challagundla KB. The Transcribed-Ultra Conserved Regions: Novel Non-Coding RNA Players in Neuroblastoma Progression. Noncoding RNA. 2019;5(2):39. DOI: 10.3390/ncrna5020039

Yan P, Frankhouser D, Murphy M, et al. Genome-wide methylation profiling in decitabine-treated patients with acute myeloid leukemia. Blood. 2012;120(12):2466-2474. DOI: 10.1182/blood-2012-05-429175

Abraham SM, Lawrence T, Kleiman A, et al. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J Exp Med. 2006;203(8):1883-1889. DOI: 10.1084/jem.20060336

Montecucco A, Zanetta F, Biamonti G. Molecular mechanisms of etoposide. EXCLI J. 2015;14:95-108. DOI: 10.17179/excli2015-561

Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract. 2014;2014:357027. DOI: 10.1155/2014/357027

Jiang T, Zhou C, Ren S. Role of IL-2 in cancer immunotherapy. Oncoimmunology. 2016;5(6):e1163462. DOI: 10.1080/2162402X.2016.1163462

Fink EC, Ebert BL. The novel mechanism of lenalidomide activity. Blood. 2015;126(21):2366-2369. DOI: 10.1182/blood-2015-07-567958

Kotla V, Goel S, Nischal S, et al. Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol. 2009;2:36. DOI: 10.1186/1756-8722-2-36

Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107(2):135-142. DOI: 10.1172/JCI11914

Fritsch M, Jordan VC. Long-term Tamoxifen Therapy for the Treatment of Breast Cancer. Cancer Control. 1994;1(4):356-366.

Tam CS. Zanubrutinib: a novel BTK inhibitor in chronic lymphocytic leukemia and non-Hodgkin lymphoma. Clin Adv Hematol Oncol. 2019;17(1):32-34.

Tian H, Cronstein BN. Understanding the mechanisms of action of methotrexate: implications for the treatment of rheumatoid arthritis. Bull NYU Hosp Jt Dis. 2007;65(3):168-173.

Dellis AE, Papatsoris AG. Perspectives on the current and emerging chemical androgen receptor antagonists for the treatment of prostate cancer. Expert Opin Pharmacother. 2019;20(2):163-172. DOI: 10.1080/14656566.2018.1548611

Miller J, Tarter TH. Combination therapy with dutasteride and tamsulosin for the treatment of symptomatic enlarged prostate. Clin Interv Aging. 2009;4:251-258. DOI: 10.2147/cia.s4102

Saha A, Sharma AR, Bhattacharya M, et al. Probable Molecular Mechanism of Remdesivir for the Treatment of COVID-19: Need to Know More. Arch Med Res. 2020;51(6):585-586. DOI: 10.1016/j.arcmed.2020.05.001

Загрузки


Просмотров аннотации: 145

Опубликован

30.12.2021

Как цитировать

1.
Патания А.С., Пратипати Ф., Абдул Б.А.А., Чава С., Катта С.С., Гупта С.К., Гангула П.Р., Пандей М.К., Дерден Д.Л., Байраредди С.Н., Чаллагундла К.Б. COVID-19 И СОПУТСТВУЮЩАЯ ОНКОЛОГИЧЕСКАЯ ПАТОЛОГИЯ: ТЕРАПЕВТИЧЕСКИЕ ВОЗМОЖНОСТИ И СЛОЖНОСТИ // Juvenis Scientia. 2021. т. 7, № 6. сс. 28-70. DOI: 10.32415/jscientia_2021_7_6_28-70.

Выпуск

Раздел

ПЕРЕВОДНЫЕ СТАТЬИ

Категории